Assembly of food proteins for nano- encapsulation and delivery of nutraceuticals (a mini-review)
Incorporation of hydrophobic and poorly soluble nutraceuticals into food formulations is among the great challenges in food science and pharmaceutical fields. One effective strategy to meet this challenge is to develop a kind of food-compatible nanovehicles for improving water solubility, stability,...
Uloženo v:
| Vydáno v: | Food hydrocolloids Ročník 117; s. 106710 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.08.2021
|
| Témata: | |
| ISSN: | 0268-005X, 1873-7137 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Incorporation of hydrophobic and poorly soluble nutraceuticals into food formulations is among the great challenges in food science and pharmaceutical fields. One effective strategy to meet this challenge is to develop a kind of food-compatible nanovehicles for improving water solubility, stability, bioavailability and bioactivities of these nutraceuticals. Many food protein-based nano-architectures, e.g., nanoparticles, nano-complexes, nanogels, nano-micelles, nanofibers or nanotubes, have been demonstrated to perform as outstanding nanovehicles in this regard. They are not only nutritional/digestible, safe, and easy to prepare and handle, but also have high encapsulation performance and nutraceutical loading capacity. In some cases, the encapsulation in these nanovehicles can impart an intestine-targeted and controlled delivery function to encapsulated nutraceuticals. In this paper, the assembly of milk and soy proteins into a variety of nano-architectures, as potential nanovehicles for hydrophobic nutraceuticals is critically reviewed. The strategies to trigger the assembly, or disassembly/reassembly of naturally occurring nano-architectures (e.g., native soy oligomeric globulins and casein micelles), denatured and aggregated proteins (e.g., soy protein isolate and whey protein isolate), and monomeric globular proteins (e.g., β-lactoglobulin) are highlighted. The general principles of protein self-assembly are also discussed. Due to the fast increasing interests for the incorporation of hydrophobic nutraceuticals in many novel food formulations, this review is of relevance for providing a state-of-art knowledge about the strategies and approaches to develop food protein-based nano-architectures as effective nanovehicles for nutraceuticals.
[Display omitted]
•Food proteins exhibit a great potential in nanoencapsulation of nutraceuticals.•General principles of protein self-assembly are presented.•Soy and milk proteins can form versatile nano-architectures via different strategies.•Strategies to trigger the assembly of soy and milk proteins into nano-architectures are highlighted.•Natural architectures (casein micelles and soy globulins) can perform as nanovehicles for nutraceuticals. |
|---|---|
| AbstractList | Incorporation of hydrophobic and poorly soluble nutraceuticals into food formulations is among the great challenges in food science and pharmaceutical fields. One effective strategy to meet this challenge is to develop a kind of food-compatible nanovehicles for improving water solubility, stability, bioavailability and bioactivities of these nutraceuticals. Many food protein-based nano-architectures, e.g., nanoparticles, nano-complexes, nanogels, nano-micelles, nanofibers or nanotubes, have been demonstrated to perform as outstanding nanovehicles in this regard. They are not only nutritional/digestible, safe, and easy to prepare and handle, but also have high encapsulation performance and nutraceutical loading capacity. In some cases, the encapsulation in these nanovehicles can impart an intestine-targeted and controlled delivery function to encapsulated nutraceuticals. In this paper, the assembly of milk and soy proteins into a variety of nano-architectures, as potential nanovehicles for hydrophobic nutraceuticals is critically reviewed. The strategies to trigger the assembly, or disassembly/reassembly of naturally occurring nano-architectures (e.g., native soy oligomeric globulins and casein micelles), denatured and aggregated proteins (e.g., soy protein isolate and whey protein isolate), and monomeric globular proteins (e.g., β-lactoglobulin) are highlighted. The general principles of protein self-assembly are also discussed. Due to the fast increasing interests for the incorporation of hydrophobic nutraceuticals in many novel food formulations, this review is of relevance for providing a state-of-art knowledge about the strategies and approaches to develop food protein-based nano-architectures as effective nanovehicles for nutraceuticals. Incorporation of hydrophobic and poorly soluble nutraceuticals into food formulations is among the great challenges in food science and pharmaceutical fields. One effective strategy to meet this challenge is to develop a kind of food-compatible nanovehicles for improving water solubility, stability, bioavailability and bioactivities of these nutraceuticals. Many food protein-based nano-architectures, e.g., nanoparticles, nano-complexes, nanogels, nano-micelles, nanofibers or nanotubes, have been demonstrated to perform as outstanding nanovehicles in this regard. They are not only nutritional/digestible, safe, and easy to prepare and handle, but also have high encapsulation performance and nutraceutical loading capacity. In some cases, the encapsulation in these nanovehicles can impart an intestine-targeted and controlled delivery function to encapsulated nutraceuticals. In this paper, the assembly of milk and soy proteins into a variety of nano-architectures, as potential nanovehicles for hydrophobic nutraceuticals is critically reviewed. The strategies to trigger the assembly, or disassembly/reassembly of naturally occurring nano-architectures (e.g., native soy oligomeric globulins and casein micelles), denatured and aggregated proteins (e.g., soy protein isolate and whey protein isolate), and monomeric globular proteins (e.g., β-lactoglobulin) are highlighted. The general principles of protein self-assembly are also discussed. Due to the fast increasing interests for the incorporation of hydrophobic nutraceuticals in many novel food formulations, this review is of relevance for providing a state-of-art knowledge about the strategies and approaches to develop food protein-based nano-architectures as effective nanovehicles for nutraceuticals. [Display omitted] •Food proteins exhibit a great potential in nanoencapsulation of nutraceuticals.•General principles of protein self-assembly are presented.•Soy and milk proteins can form versatile nano-architectures via different strategies.•Strategies to trigger the assembly of soy and milk proteins into nano-architectures are highlighted.•Natural architectures (casein micelles and soy globulins) can perform as nanovehicles for nutraceuticals. |
| ArticleNumber | 106710 |
| Author | Tang, Chuan-He |
| Author_xml | – sequence: 1 givenname: Chuan-He surname: Tang fullname: Tang, Chuan-He email: chtang@scut.edu.cn organization: The Research Group of Food Colloids and Nanotechnology, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China |
| BookMark | eNqFkE1LAzEQhoNUsH78BCFHPWzNJJvdLR6kiF8geFHwFtPsBFO2SU12K_33ptaTl56GGd7nZXiOycgHj4ScA5sAg-pqMbEhtJ-bdsIZh3yramAHZAxNLYoaRD0iY8arpmBMvh-R45QWjEHNAMbkY5YSLufdhgZLtzV0FUOPzqe8Req1DwVFb_QqDZ3uXfBU-5a22Lk1xl_KD33UBofeGd0leqHp0nlXRFw7_L48JYc2n_Hsb56Qt_u719vH4vnl4el29lwYLuu-MFbbZmq4RQEC-BS4lqXkjSw5VtLkdyWXwjIwCM0cNCCCEUbO7ZRrYKU4IRe73vz_14CpV0uXDHad9hiGpLjkJa-EKHmOyl3UxJBSRKtW0S113ChgamtULdSfUbU1qnZGM3f9jzOu_3WSBbhuL32zozFbyGqiSsZls9i6iKZXbXB7Gn4ApSuXuQ |
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2023_137232 crossref_primary_10_3389_fnut_2023_1248611 crossref_primary_10_1016_j_foodchem_2022_134348 crossref_primary_10_1016_j_foodhyd_2021_107004 crossref_primary_10_1016_j_tifs_2021_11_020 crossref_primary_10_1016_j_jff_2022_105120 crossref_primary_10_1002_jsfa_11917 crossref_primary_10_1002_aocs_12729 crossref_primary_10_3390_foods14040691 crossref_primary_10_3390_foods13172756 crossref_primary_10_1111_ijfs_16763 crossref_primary_10_1016_j_foodhyd_2023_109155 crossref_primary_10_1016_j_jddst_2021_102693 crossref_primary_10_1016_j_tifs_2025_104974 crossref_primary_10_1002_jsfa_13784 crossref_primary_10_1007_s13205_021_03108_9 crossref_primary_10_1016_j_jddst_2024_106583 crossref_primary_10_3390_foods10091989 crossref_primary_10_3390_pr11051459 crossref_primary_10_1016_j_ijpharm_2023_122754 crossref_primary_10_1016_j_surfin_2024_105190 crossref_primary_10_1111_1541_4337_13139 crossref_primary_10_1016_j_foodres_2022_111650 crossref_primary_10_1016_j_cis_2021_102432 crossref_primary_10_1016_j_fbio_2023_102982 crossref_primary_10_1016_j_tifs_2021_12_007 crossref_primary_10_1080_10408398_2021_2004994 crossref_primary_10_1016_j_foodchem_2023_138323 crossref_primary_10_3390_foods13152453 crossref_primary_10_1016_j_lwt_2021_112515 crossref_primary_10_3390_foods13244033 crossref_primary_10_1111_1541_4337_13066 crossref_primary_10_1002_aocs_12952 crossref_primary_10_1111_ijfs_16624 crossref_primary_10_1080_10408398_2023_2193275 crossref_primary_10_1016_j_foodchem_2025_144760 crossref_primary_10_3389_fnut_2023_1229243 crossref_primary_10_1016_j_biomaterials_2022_121616 crossref_primary_10_1016_j_foodhyd_2023_108527 crossref_primary_10_1016_j_lwt_2023_114723 crossref_primary_10_2147_IJN_S470853 crossref_primary_10_1016_j_foodhyd_2022_107798 crossref_primary_10_1016_j_foodchem_2025_143370 crossref_primary_10_1016_j_lwt_2022_113259 crossref_primary_10_1016_j_lwt_2025_118406 crossref_primary_10_1016_j_foodhyd_2022_107592 crossref_primary_10_3390_pharmaceutics15061644 crossref_primary_10_3390_nano12071099 crossref_primary_10_3390_foods11111562 crossref_primary_10_3390_colloids8040045 crossref_primary_10_1016_j_fbp_2023_03_011 crossref_primary_10_1146_annurev_food_060721_023522 crossref_primary_10_1016_j_fbio_2024_103957 |
| Cites_doi | 10.1021/jf60217a027 10.1016/0076-6879(86)31045-0 10.1021/bi700091r 10.1016/j.foodchem.2012.11.016 10.1016/j.cis.2017.02.010 10.1016/j.biotechadv.2007.07.006 10.1007/s12393-012-9050-3 10.1016/j.cocis.2009.11.002 10.1016/j.colsurfb.2019.03.051 10.1016/j.foodhyd.2010.03.015 10.1017/S0022029906001725 10.1021/acs.jafc.7b05889 10.1016/S1359-0278(97)00023-0 10.1021/jf300307t 10.1017/S0022029900033306 10.1016/j.foodhyd.2020.106344 10.1146/annurev-food-032818-121907 10.1126/science.1962191 10.1016/j.tifs.2005.12.009 10.1016/j.cocis.2007.07.010 10.1021/jf061417c 10.1016/j.foodres.2014.06.010 10.1016/j.foodhyd.2012.01.016 10.1080/10408398.2015.1067594 10.1039/c2fo10249h 10.1039/C7NR00598A 10.1016/j.foodchem.2018.07.216 10.1016/j.foodhyd.2018.08.031 10.1016/j.foodhyd.2015.11.022 10.1016/j.foodchem.2012.04.020 10.1016/j.foodhyd.2015.12.028 10.1007/s11947-012-0944-0 10.1023/A:1020699200092 10.1016/j.foodhyd.2013.11.010 10.1016/j.foodhyd.2008.10.008 10.1017/S0022029900017295 10.1080/08957959.2011.565057 10.1016/j.colsurfb.2010.06.033 10.1063/1.2951987 10.1021/la900501n 10.1016/j.foodhyd.2014.02.023 10.1016/j.foodres.2020.108979 10.1021/jf201957r 10.1039/b815775h 10.1039/C7FO00812K 10.1038/nbt874 10.1016/j.cocis.2008.01.002 10.1021/acs.nanolett.9b04841 10.1016/j.foodhyd.2019.01.042 10.1016/j.foodhyd.2019.01.012 10.1016/j.foodhyd.2006.09.006 10.1016/j.nantod.2017.04.006 10.1073/pnas.082065899 10.1021/jf400752a 10.1016/S0968-0896(98)00219-3 10.1016/j.foodhyd.2010.11.025 10.1016/j.ijpharm.2017.01.067 10.1016/j.ifset.2011.07.007 10.1039/C4SM00239C 10.1016/j.tifs.2005.12.011 10.1021/acs.jafc.8b05822 10.1016/S0308-8146(01)00099-1 10.1021/jf403847k 10.1080/10408398.2019.1708263 10.1038/nnano.2010.59 10.1021/acs.jafc.8b03798 10.1016/j.sbi.2004.06.006 10.1016/j.idairyj.2010.04.001 10.1016/j.foodhyd.2020.106106 10.1002/(SICI)1097-0282(19981005)46:4<253::AID-BIP7>3.0.CO;2-O 10.1039/C7FO00323D 10.1039/C9FO02035G 10.1016/j.jddst.2020.101531 10.1016/j.foodhyd.2017.03.024 10.1016/j.foodhyd.2017.07.021 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.foodhyd.2021.106710 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7137 |
| ExternalDocumentID | 10_1016_j_foodhyd_2021_106710 S0268005X21001260 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLY HVGLF HZ~ IHE J1W KOM M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCE SDF SDG SES SEW SPC SPCBC SSA SSG SSZ T5K UHS UNMZH WH7 Y6R ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c257t-cfaf89c2fe31312912a54528542e65c0175253f01ce18b1a1ee1c3c5bf92a1043 |
| ISSN | 0268-005X |
| IngestDate | Wed Oct 01 14:58:53 EDT 2025 Tue Nov 18 21:20:43 EST 2025 Sat Nov 29 07:24:36 EST 2025 Fri Feb 23 02:46:52 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Nanovehicles Whey proteins Casein micelles Assembly Soy proteins Nutraceuticals |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c257t-cfaf89c2fe31312912a54528542e65c0175253f01ce18b1a1ee1c3c5bf92a1043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2524263342 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2524263342 crossref_primary_10_1016_j_foodhyd_2021_106710 crossref_citationtrail_10_1016_j_foodhyd_2021_106710 elsevier_sciencedirect_doi_10_1016_j_foodhyd_2021_106710 |
| PublicationCentury | 2000 |
| PublicationDate | August 2021 2021-08-00 20210801 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Food hydrocolloids |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Menéndez-Aguirre, Kessler, Stuetz, Grune, Weiss, Hinrichs (bib38) 2014; 64 Huppertz, Kelly, de Kruif (bib25) 2006; 73 Shpigelman, Shoham, Israeli-Lev, Livney (bib57) 2014; 40 Lee, Yildiz, dos Santos, Jiang, Andrade, Engeseth (bib30) 2016; 55 Tang (bib62) 2019; 91 Shpigelman, Cohen, Livney (bib55) 2012; 29 Vaia, Smiddy, Kelly, Huppertz (bib68) 2005; 54 Boire, Renard, Bouchoux, Pezennec, Croguennec, Lechevalier (bib4) 2019; 10 Graveland-Bikker, de Kruif (bib19) 2006; 17 Simões, Martíns, Pinheiro, Vicente, Ramos (bib59) 2020; 131 Zhang (bib74) 2003; 21 Ipsen, Otte (bib26) 2007; 25 Kaya-Celiker, Mallikarjunan (bib28) 2012; 4 Simões, Madalena, Pinheiro, Teíxeira, Vicente, Ramos (bib58) 2017; 243 Knoop, Knoop, Wiechen (bib29) 1979; 46 Zimet, Rosenberg, Livney (bib79) 2011; 25 Menéndez-Aguirre, Stuetz, Grune, Kessler, Weiss, Hinrichs (bib39) 2011; 31 Semo, Kesselman, Danino, Livney (bib54) 2007; 21 Ghayour, Hosseini, Eskandari, Esteghlal, Nekoei, Gahruie (bib17) 2019; 87 Pace (bib43) 1986; 131 van der Linden, Venema (bib34) 2007; 12 Chevalier-Lucia, Blayo, Gràcia-Julià, Picart-Palmade, Dumay (bib9) 2011; 12 Hirota-Nakaoka, Goto (bib23) 1999; 7 Hu, Bao, Li, You, Du, Liu (bib24) 2019; 10 Pan, Luo, Gan, Baek, Zhong (bib44) 2014; 10 Schmitt, Bovay, Vuilliomenet, Rouvet, Bovetto, Barbar (bib53) 2009; 25 Li, Li, Bao, Liu, Li, Jiang (bib33) 2017; 9 Wagner, Biliaderis, Moschakis (bib69) 2020 Zhang, Zhou, Zhao, Ning, Sun-Waterhouse, Sun (bib77) 2017; 8 Li, Du, Jin, Du (bib32) 2012; 60 Ron, Zimet, Bargarum, Livney (bib51) 2010; 20 Uversky, Narizhneva, Kirschstein, Winter, Löber (bib67) 1997; 2 O'Mahony, Fox (bib42) 2013 Gögelein, Nägele, Tuinier, Gibaud, Stradner, Schurtenberger (bib18) 2008; 129 Tarhini, Greige-Gerges, Elaissari (bib65) 2017; 522 Ezhilarasi, Karthik, Chhanwal, Anandharamakrishnan (bib16) 2013; 6 Dickinson, Scott, Hussein, Argos, Nielsen (bib14) 1990; 2 Rehan, Ahemad, Gupta (bib48) 2019; 179 Adamcik, Jung, Flakowski, de los Rios, Dietler, Mezzenga (bib2) 2010; 5 Sun, Luo, Hou, Liu (bib60) 2017; 14 Chen, Zhao, Chassenieux, Nicolai (bib8) 2017; 70 Otzen, Sehgal, Nesgaard (bib41) 2007; 46 Shpigelman, Israeli, Livney (bib56) 2010; 24 Wang, Wang, Qian, Wang, Chunyu, Xie (bib70) 1999; 18 Whitesides, Mathias, Seto (bib73) 1991; 254 Zhang, Zhao, Ning, Yu, Tang, Zhou (bib75) 2018; 66 Liu, Liu, Li, Zhang, Tang (bib35) 2019; 67 Chen, Zhao, Chassenieux, Nicolai (bib7) 2016; 56 Pan, Zhong, Baek (bib45) 2013; 61 Sáiz-Abajo, González-Ferrero, Moreno-Ruíz, Romo-Hualde (bib52) 2013; 138 Roach, Harte (bib50) 2008; 9 Tang (bib61) 2017; 57 Du, Bao, Huang, Jiang, Jiao, Ren (bib15) 2019; 271 Jiang, Huang, Bao, Jiao, Zhao, Du (bib27) 2018; 66 Livney (bib37) 2010; 1i5 Relkin, Shukat (bib49) 2012; 134 Dalgleish, Law (bib12) 1988; 55 Dickinson (bib13) 2010; 81 Bao, Liu, Li, Chai, Zhang, Jiao (bib3) 2020; 20 Haham, Ish-Shalom, Nodelman, Duek, Segal, Kustanovich (bib22) 2012; 3 Pérez, David-Birman, Kesselman, Levi-Tal, Lesmes (bib46) 2014; 38 Acosta (bib1) 2009; 14 Grinberg, Grinberg, Burova, Dalgalarrondo, Haertlé (bib21) 1998; 46 Thanh, Shibasaki (bib66) 1978; 26 Zimet, Livney (bib78) 2009; 23 Mohammadian, Moghadam, Salami, Emam-Djomeh, Alavi, Momen (bib40) 2020; 56 Cohen, Levi, Lesmes, Margier, Reboul, Livney (bib10) 2017; 8 Zhang, Zhou, Zhao, Lin, Ning, Sun (bib76) 2018; 74 Chen, Remondetto, Subirade (bib6) 2006; 17 Graveland-Bikker, Koning, Koerten, Geels, Heeren, de Kruif (bib20) 2009; 5 Liang, Tang (bib31) 2013; 61 Rajagopal, Schneider (bib47) 2004; 14 Boulet, Britten, Lamarche (bib5) 2001; 74 Whitesides, Boncheva (bib72) 2002; 99 Tang (bib63) 2020; 109 Wang, Yang, Yin, Zhang, Tang, Li (bib71) 2011; 59 Liu, Li, Zhang, Tang (bib36) 2019; 91 Tang (bib64) 2021; 112 Dalgleish, Law (bib11) 1988; 55 Zimet (10.1016/j.foodhyd.2021.106710_bib78) 2009; 23 Rajagopal (10.1016/j.foodhyd.2021.106710_bib47) 2004; 14 Shpigelman (10.1016/j.foodhyd.2021.106710_bib56) 2010; 24 Acosta (10.1016/j.foodhyd.2021.106710_bib1) 2009; 14 O'Mahony (10.1016/j.foodhyd.2021.106710_bib42) 2013 Ghayour (10.1016/j.foodhyd.2021.106710_bib17) 2019; 87 Schmitt (10.1016/j.foodhyd.2021.106710_bib53) 2009; 25 Graveland-Bikker (10.1016/j.foodhyd.2021.106710_bib20) 2009; 5 Dalgleish (10.1016/j.foodhyd.2021.106710_bib11) 1988; 55 Jiang (10.1016/j.foodhyd.2021.106710_bib27) 2018; 66 Livney (10.1016/j.foodhyd.2021.106710_bib37) 2010; 1i5 Chevalier-Lucia (10.1016/j.foodhyd.2021.106710_bib9) 2011; 12 Vaia (10.1016/j.foodhyd.2021.106710_bib68) 2005; 54 Sun (10.1016/j.foodhyd.2021.106710_bib60) 2017; 14 Whitesides (10.1016/j.foodhyd.2021.106710_bib72) 2002; 99 Shpigelman (10.1016/j.foodhyd.2021.106710_bib55) 2012; 29 Uversky (10.1016/j.foodhyd.2021.106710_bib67) 1997; 2 Ron (10.1016/j.foodhyd.2021.106710_bib51) 2010; 20 Rehan (10.1016/j.foodhyd.2021.106710_bib48) 2019; 179 Cohen (10.1016/j.foodhyd.2021.106710_bib10) 2017; 8 Li (10.1016/j.foodhyd.2021.106710_bib33) 2017; 9 Pace (10.1016/j.foodhyd.2021.106710_bib43) 1986; 131 Chen (10.1016/j.foodhyd.2021.106710_bib6) 2006; 17 Adamcik (10.1016/j.foodhyd.2021.106710_bib2) 2010; 5 Liu (10.1016/j.foodhyd.2021.106710_bib35) 2019; 67 Ezhilarasi (10.1016/j.foodhyd.2021.106710_bib16) 2013; 6 Semo (10.1016/j.foodhyd.2021.106710_bib54) 2007; 21 Tang (10.1016/j.foodhyd.2021.106710_bib62) 2019; 91 Pan (10.1016/j.foodhyd.2021.106710_bib45) 2013; 61 Chen (10.1016/j.foodhyd.2021.106710_bib7) 2016; 56 Du (10.1016/j.foodhyd.2021.106710_bib15) 2019; 271 Simões (10.1016/j.foodhyd.2021.106710_bib58) 2017; 243 Wang (10.1016/j.foodhyd.2021.106710_bib71) 2011; 59 Bao (10.1016/j.foodhyd.2021.106710_bib3) 2020; 20 Tang (10.1016/j.foodhyd.2021.106710_bib63) 2020; 109 Simões (10.1016/j.foodhyd.2021.106710_bib59) 2020; 131 Chen (10.1016/j.foodhyd.2021.106710_bib8) 2017; 70 Wang (10.1016/j.foodhyd.2021.106710_bib70) 1999; 18 Dickinson (10.1016/j.foodhyd.2021.106710_bib13) 2010; 81 Kaya-Celiker (10.1016/j.foodhyd.2021.106710_bib28) 2012; 4 Zhang (10.1016/j.foodhyd.2021.106710_bib77) 2017; 8 Gögelein (10.1016/j.foodhyd.2021.106710_bib18) 2008; 129 Li (10.1016/j.foodhyd.2021.106710_bib32) 2012; 60 Mohammadian (10.1016/j.foodhyd.2021.106710_bib40) 2020; 56 Relkin (10.1016/j.foodhyd.2021.106710_bib49) 2012; 134 Tarhini (10.1016/j.foodhyd.2021.106710_bib65) 2017; 522 Wagner (10.1016/j.foodhyd.2021.106710_bib69) 2020 Grinberg (10.1016/j.foodhyd.2021.106710_bib21) 1998; 46 Menéndez-Aguirre (10.1016/j.foodhyd.2021.106710_bib39) 2011; 31 Boire (10.1016/j.foodhyd.2021.106710_bib4) 2019; 10 Haham (10.1016/j.foodhyd.2021.106710_bib22) 2012; 3 Whitesides (10.1016/j.foodhyd.2021.106710_bib73) 1991; 254 Boulet (10.1016/j.foodhyd.2021.106710_bib5) 2001; 74 Knoop (10.1016/j.foodhyd.2021.106710_bib29) 1979; 46 Sáiz-Abajo (10.1016/j.foodhyd.2021.106710_bib52) 2013; 138 Hu (10.1016/j.foodhyd.2021.106710_bib24) 2019; 10 Tang (10.1016/j.foodhyd.2021.106710_bib64) 2021; 112 Zhang (10.1016/j.foodhyd.2021.106710_bib74) 2003; 21 Zhang (10.1016/j.foodhyd.2021.106710_bib76) 2018; 74 Huppertz (10.1016/j.foodhyd.2021.106710_bib25) 2006; 73 Tang (10.1016/j.foodhyd.2021.106710_bib61) 2017; 57 Ipsen (10.1016/j.foodhyd.2021.106710_bib26) 2007; 25 Liu (10.1016/j.foodhyd.2021.106710_bib36) 2019; 91 Zhang (10.1016/j.foodhyd.2021.106710_bib75) 2018; 66 Shpigelman (10.1016/j.foodhyd.2021.106710_bib57) 2014; 40 Menéndez-Aguirre (10.1016/j.foodhyd.2021.106710_bib38) 2014; 64 Thanh (10.1016/j.foodhyd.2021.106710_bib66) 1978; 26 Dalgleish (10.1016/j.foodhyd.2021.106710_bib12) 1988; 55 van der Linden (10.1016/j.foodhyd.2021.106710_bib34) 2007; 12 Otzen (10.1016/j.foodhyd.2021.106710_bib41) 2007; 46 Lee (10.1016/j.foodhyd.2021.106710_bib30) 2016; 55 Zimet (10.1016/j.foodhyd.2021.106710_bib79) 2011; 25 Liang (10.1016/j.foodhyd.2021.106710_bib31) 2013; 61 Dickinson (10.1016/j.foodhyd.2021.106710_bib14) 1990; 2 Pérez (10.1016/j.foodhyd.2021.106710_bib46) 2014; 38 Hirota-Nakaoka (10.1016/j.foodhyd.2021.106710_bib23) 1999; 7 Graveland-Bikker (10.1016/j.foodhyd.2021.106710_bib19) 2006; 17 Pan (10.1016/j.foodhyd.2021.106710_bib44) 2014; 10 Roach (10.1016/j.foodhyd.2021.106710_bib50) 2008; 9 |
| References_xml | – volume: 70 start-page: 88 year: 2017 end-page: 95 ident: bib8 article-title: The effect of adding NaCl on the thermal aggregation and gelation of soy protein isolate publication-title: Food Hydrocolloids – volume: 9 start-page: 9317 year: 2017 end-page: 9324 ident: bib33 article-title: Bioinspired peptosomes with programmed stimuli-responses for sequential drug release and high-performance anticancer therapy publication-title: Nanoscale – volume: 66 start-page: 4208 year: 2018 end-page: 4218 ident: bib75 article-title: Development of a sono-assembled, bifunctional soy peptide nanoparticle for cellular delivery of hydrophobic active cargos publication-title: Journal of Agricultural and Food Chemistry – volume: 2 start-page: 163 year: 1997 end-page: 172 ident: bib67 article-title: Conformational transitions provoked by organic solvents in publication-title: Folding & Design – volume: 8 start-page: 2133 year: 2017 end-page: 2141 ident: bib10 article-title: Re-assembled casein micelles improve publication-title: Food & Function – volume: 29 start-page: 57 year: 2012 end-page: 67 ident: bib55 article-title: Thermally-induced β-lactoglobulin-EGCG nanovehicles: Loading, stability, sensory and digestive-release study publication-title: Food Hydrocolloids – volume: 91 start-page: 92 year: 2019 end-page: 116 ident: bib62 article-title: Nanostructured soy proteins: Fabrication and applications as delivery systems for bioactives (a review) publication-title: Food Hydrocolloids – volume: 10 start-page: 521 year: 2019 end-page: 539 ident: bib4 article-title: Soft-matter approaches for controlling food protein interactions and assembly publication-title: Annual Reviews of Food Science and Technology – volume: 7 start-page: 67 year: 1999 end-page: 73 ident: bib23 article-title: Alcohol-induced denaturation of β-lactoglobulin: A close correlation to the alcohol-induced α-helix formation of melittin publication-title: Bioorganic & Medicinal Chemistry – volume: 66 start-page: 12921 year: 2018 end-page: 12930 ident: bib27 article-title: Enzymatically partially hydrolyzed α-lactalbumin peptides for self-assembled micelle formation and their application for coencapsulation of multiple antioxidants publication-title: Journal of Agricultural and Food Chemistry – volume: 25 start-page: 7899 year: 2009 end-page: 7909 ident: bib53 article-title: Multiscale characterization of individualized publication-title: Langmuir – volume: 5 start-page: 423 year: 2010 end-page: 428 ident: bib2 article-title: Understanding amyloid aggregation by statistical analysis of atomic force microscopy images publication-title: Nature Nanotechnology – volume: 2 start-page: 403 year: 1990 end-page: 413 ident: bib14 article-title: Effect of structural modifications on the assembly of a glycinin subunit publication-title: The Plant Cell Online – volume: 9 start-page: 1 year: 2008 end-page: 8 ident: bib50 article-title: Disruption and sedimentation of casein micelles and casein micelle isolates under high-pressure homogenization publication-title: s – volume: 46 start-page: 347 year: 1979 end-page: 350 ident: bib29 article-title: Sub-structure of synthetic casein micelles publication-title: Journal of Dairy Research – volume: 25 start-page: 602 year: 2007 end-page: 605 ident: bib26 article-title: Self-assembly of partially hydrolysated publication-title: Biotechnology Advances – year: 2020 ident: bib69 article-title: Whey proteins: Musings on denaturation, aggregate formation and gelation publication-title: Critical Reviews in Food Science and Nutrition – volume: 4 start-page: 114 year: 2012 end-page: 123 ident: bib28 article-title: Better nutrients and therapeutics delivery in food through nanotechnology publication-title: Food Engineering Reviews – volume: 14 start-page: 3 year: 2009 end-page: 15 ident: bib1 article-title: Bioavailability of nanoparticles in nutrient and nutraceutical delivery publication-title: Current Opinion in Colloid & Interface Science – volume: 1i5 start-page: 73 year: 2010 end-page: 83 ident: bib37 article-title: Milk proteins as vehicles for bioactives publication-title: Current Opinion in Colloid & Interface Science – volume: 12 start-page: 158 year: 2007 end-page: 165 ident: bib34 article-title: Self-assembly and aggregation of proteins publication-title: Current Opinion in Colloid & Interface Science – volume: 10 start-page: 8263 year: 2019 end-page: 8272 ident: bib24 article-title: The construction of enzymolyzed α-lactalbumin based micellar nanoassemblies for encapsulating various kinds of hydrophobic bioactive compounds publication-title: Food & Function – volume: 21 start-page: 1171 year: 2003 end-page: 1178 ident: bib74 article-title: Fabrication of novel biomaterials through molecular self-assembly publication-title: Nature Biotechnology – volume: 112 start-page: 106344 year: 2021 ident: bib64 article-title: Strategies to utilize naturally occurring protein architectures as nanovehicles for hydrophobic nutraceuticals (a review) publication-title: Food Hydrocolloids – volume: 12 start-page: 416 year: 2011 end-page: 425 ident: bib9 article-title: Processing of phosphocasein dispersions by dynamic high pressure: Effects on the dispersion physico-chemical characteristics and the binding of publication-title: Innovative Food Science & Emerging Technologies – volume: 3 start-page: 737 year: 2012 end-page: 744 ident: bib22 article-title: Stability and bioavailability of vitamin D nanoencapsulated in casein micelles publication-title: Food & Function – volume: 81 start-page: 130 year: 2010 end-page: 140 ident: bib13 article-title: Flocculation of protein-stabilized oil-in-water emulsions publication-title: Colloids and Surfaces B: Biointerfaces – volume: 23 start-page: 1120 year: 2009 end-page: 1126 ident: bib78 article-title: Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids publication-title: Food Hydrocolloids – volume: 55 start-page: 727 year: 1988 end-page: 735 ident: bib12 article-title: pH-induced dissociation of bovine casein micelles. II. Mineral solubilization and its relation to casein release publication-title: Journal of Dairy Research – volume: 40 start-page: 214 year: 2014 end-page: 224 ident: bib57 article-title: β-Lactoglobulin-naringenin complexes: Nano-vehicles for the delivery of a hydrophobic nutraceutical publication-title: Food Hydrocolloids – volume: 243 start-page: 23 year: 2017 end-page: 45 ident: bib58 article-title: Micro- and nano bio-based delivery systems for food applications: publication-title: Advances in Colloid and Interface Science – volume: 31 start-page: 265 year: 2011 end-page: 274 ident: bib39 article-title: High pressure-assisted encapsulation of vitamin D publication-title: High Pressure Research – volume: 55 start-page: 200 year: 2016 end-page: 209 ident: bib30 article-title: Soy protein nano-aggregates with improved functional properties prepared with sequential pH treatment and ultrasonication publication-title: Food Hydrocolloids – volume: 57 start-page: 2636 year: 2017 end-page: 2679 ident: bib61 article-title: Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility publication-title: Critical Reviews in Food Science and Nutrition – volume: 18 start-page: 547 year: 1999 end-page: 555 ident: bib70 article-title: Methanol-induced unfolding and refolding of cytochrome b5 and its P40V mutant monitored by UV-Visible, CD, and fluorescence spectra publication-title: Journal of Protein Chemistry – volume: 38 start-page: 40 year: 2014 end-page: 47 ident: bib46 article-title: Milk protein-vitamin interactions: Formation of beta-lactoglobulin/folid acid nano-complexes and their impact on publication-title: Food Hydrocolloids – volume: 56 start-page: 417 year: 2016 end-page: 424 ident: bib7 article-title: Structure of self-assembled native soy globulin in aqueous solution as a function of the concentration and the pH publication-title: Food Hydrocolloids – volume: 10 start-page: 6820 year: 2014 end-page: 6830 ident: bib44 article-title: pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity publication-title: Soft Matter – volume: 87 start-page: 394 year: 2019 end-page: 403 ident: bib17 article-title: Nanoencapsulation of quercetin and curcumin in casein-based delivery systems publication-title: Food Hydrocolloids – volume: 5 start-page: 2020 year: 2009 end-page: 2026 ident: bib20 article-title: Structural characterization of α-lactalbumin nanotubes publication-title: Soft Matter – volume: 74 start-page: 62 year: 2018 end-page: 71 ident: bib76 article-title: Soy peptide nanoparticles by ultrasound-induced self-assembly of large peptide aggregates and their role on emulsion stability publication-title: Food Hydrocolloids – volume: 67 start-page: 6292 year: 2019 end-page: 6301 ident: bib35 article-title: Novel soy publication-title: Journal of Agricultural and Food Chemistry – volume: 64 start-page: 74 year: 2014 end-page: 80 ident: bib38 article-title: Increased loading of vitamin D publication-title: Food Research International – volume: 91 start-page: 246 year: 2019 end-page: 255 ident: bib36 article-title: Novel soy publication-title: Food Hydrocolloids – volume: 134 start-page: 2141 year: 2012 end-page: 2148 ident: bib49 article-title: Food protein aggregates as vitamin-matrix carriers: Impact of processing conditions publication-title: Food Chemistry – volume: 60 start-page: 3477 year: 2012 end-page: 3484 ident: bib32 article-title: Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated publication-title: Journal of Agricultural and Food Chemistry – volume: 138 start-page: 1581 year: 2013 end-page: 1587 ident: bib52 article-title: Thermal protection of publication-title: Food Chemistry – volume: 109 start-page: 106106 year: 2020 ident: bib63 article-title: Nanocomplexation of proteins with curcumin: From interaction to nanoencapsulation (a reivew) publication-title: Food Hydrocolloids – volume: 46 start-page: 4348 year: 2007 end-page: 4359 ident: bib41 article-title: Alternative membrane protein conformations in alcohols publication-title: Biochemistry – volume: 59 start-page: 7324 year: 2011 end-page: 7332 ident: bib71 article-title: Structural rearrangement of ethanol-denatured soy proteins by high hydrostatic pressure treatment publication-title: Journal of Agricultural and Food Chemistry – volume: 271 start-page: 707 year: 2019 end-page: 714 ident: bib15 article-title: Improved stability, epithelial permeability and cellular antioxidant activity of publication-title: Food Chemistry – volume: 131 start-page: 108979 year: 2020 ident: bib59 article-title: β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies publication-title: Food Research International – volume: 74 start-page: 69 year: 2001 end-page: 74 ident: bib5 article-title: Dispersion of food proteins in water-alcohol mixed dispersants publication-title: Food Chemistry – volume: 55 start-page: 529 year: 1988 end-page: 538 ident: bib11 article-title: pH-induced dissociation of bovine casein micelles. I. Analysis of liberated caseins publication-title: Journal of Dairy Research – volume: 17 start-page: 196 year: 2006 end-page: 203 ident: bib19 article-title: Unique milk protein based nanotubes: Food and nanotechnology meet publication-title: Trends in Food Science & Technology – volume: 20 start-page: 686 year: 2010 end-page: 693 ident: bib51 article-title: Beta-lactoglobulin-polysaccharide complexes as nanovehicles for hydrophobic nutraceuticals in non-fat foods and clear beverages publication-title: International Dairy Journal – volume: 61 start-page: 11140 year: 2013 end-page: 11150 ident: bib31 article-title: Emulsifying and interfacial properties of vicilins: Role of conformational flexibility at quaternary and/or tertiary levels publication-title: Journal of Agricultural and Food Chemistry – volume: 56 start-page: 101531 year: 2020 ident: bib40 article-title: Whey protein aggregates formed by non-toxic chemical cross-linking as novel carriers for curcumin delivery: Fabrication and characterization publication-title: Journal of Drug Delivery Science and Technology – volume: 73 start-page: 294 year: 2006 end-page: 298 ident: bib25 article-title: Disruption and reassociation of casein micelles under high pressure publication-title: Journal of Dairy Research – volume: 522 start-page: 172 year: 2017 end-page: 197 ident: bib65 article-title: Protein-based nanoparticles: From preparation to encapsulation of active molecules publication-title: International Journal of Pharmaceutics – volume: 21 start-page: 936 year: 2007 end-page: 942 ident: bib54 article-title: Casein micelle as a natural nano-capsular vehicle for nutraceuticals publication-title: Food Hydrocolloids – volume: 25 start-page: 1270 year: 2011 end-page: 1276 ident: bib79 article-title: Re-assembled casein micelles and casein nanoparticles as nano-vehicles for publication-title: Food Hydrocolloids – volume: 14 start-page: 480 year: 2004 end-page: 486 ident: bib47 article-title: Self-assembling peptides and proteins for nanotechnological applications publication-title: Current Opinion in Structural Biology – volume: 179 start-page: 280 year: 2019 end-page: 292 ident: bib48 article-title: Casein nanomicelle as an emerging biomaterial – a comprehensive review publication-title: Colloids and Surfaces B: Biointerfaces – volume: 14 start-page: 16 year: 2017 end-page: 41 ident: bib60 article-title: Nanostructures based on protein self-assembly: From hierarchical construction to bioinspired materials publication-title: Nano Today – volume: 8 start-page: 4384 year: 2017 end-page: 4395 ident: bib77 article-title: Soy peptide aggregates formed during hydrolysis reduced protein extraction without decreasing their nutritional value publication-title: Food & Function – volume: 61 start-page: 6036 year: 2013 end-page: 6043 ident: bib45 article-title: Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules publication-title: Journal of Agricultural and Food Chemistry – volume: 54 start-page: 8288 year: 2005 end-page: 8293 ident: bib68 article-title: Solvent-mediated disruption of bovine casein micelles at alkaline pH publication-title: Journal of Agricultural and Food Chemistry – volume: 129 start-page: 85 year: 2008 end-page: 102 ident: bib18 article-title: A simple patchy colloid model for the phase behavior of lysozyme dispersions publication-title: Journal of Physical Chemistry – volume: 254 start-page: 1312 year: 1991 ident: bib73 article-title: Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures publication-title: Science – volume: 17 start-page: 272 year: 2006 end-page: 283 ident: bib6 article-title: Food protein-based materials as nutraceutical delivery systems publication-title: Trends in Food Science & Technology – volume: 26 start-page: 695 year: 1978 end-page: 699 ident: bib66 article-title: Major proteins of soybean seeds. Reconstitution of publication-title: Journal of Agricultural and Food Chemistry – start-page: 43 year: 2013 end-page: 85 ident: bib42 article-title: Milk proteins: Introduction and historical aspects publication-title: ns: Basic aspects – volume: 46 start-page: 253 year: 1998 end-page: 265 ident: bib21 article-title: Ethanol-induced conformational transitions in Holo- publication-title: Biopolymers – volume: 6 start-page: 628 year: 2013 end-page: 647 ident: bib16 article-title: Nanoencapsulation techniques for food bioactive compounds: A review publication-title: Food and Bioprocess Technology – volume: 131 start-page: 266 year: 1986 end-page: 280 ident: bib43 article-title: Determination and analysis of urea and guanidine hydrochloride denaturation curves publication-title: Methods in Enzymology – volume: 24 start-page: 735 year: 2010 end-page: 743 ident: bib56 article-title: Thermally-induced protein-polyphenol co-assemblies: Beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG publication-title: Food Hydrocolloids – volume: 20 start-page: 1352 year: 2020 end-page: 1361 ident: bib3 article-title: Enhanced transport of shape and rigidity-tuned publication-title: Nano Letters – volume: 99 start-page: 4769 year: 2002 end-page: 4774 ident: bib72 article-title: Beyond molecules: Self-assembly of mesoscopic and macroscopic components publication-title: The Proceedings of National Academy Society of the United States of American – volume: 26 start-page: 695 year: 1978 ident: 10.1016/j.foodhyd.2021.106710_bib66 article-title: Major proteins of soybean seeds. Reconstitution of β-conglycinin from its subunits publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf60217a027 – volume: 2 start-page: 403 year: 1990 ident: 10.1016/j.foodhyd.2021.106710_bib14 article-title: Effect of structural modifications on the assembly of a glycinin subunit publication-title: The Plant Cell Online – volume: 131 start-page: 266 year: 1986 ident: 10.1016/j.foodhyd.2021.106710_bib43 article-title: Determination and analysis of urea and guanidine hydrochloride denaturation curves publication-title: Methods in Enzymology doi: 10.1016/0076-6879(86)31045-0 – volume: 46 start-page: 4348 year: 2007 ident: 10.1016/j.foodhyd.2021.106710_bib41 article-title: Alternative membrane protein conformations in alcohols publication-title: Biochemistry doi: 10.1021/bi700091r – volume: 138 start-page: 1581 year: 2013 ident: 10.1016/j.foodhyd.2021.106710_bib52 article-title: Thermal protection of β-carotene in re-assembled casein micelles during different processing technologies applied in food industry publication-title: Food Chemistry doi: 10.1016/j.foodchem.2012.11.016 – volume: 243 start-page: 23 year: 2017 ident: 10.1016/j.foodhyd.2021.106710_bib58 article-title: Micro- and nano bio-based delivery systems for food applications: In vitro behavior publication-title: Advances in Colloid and Interface Science doi: 10.1016/j.cis.2017.02.010 – volume: 25 start-page: 602 year: 2007 ident: 10.1016/j.foodhyd.2021.106710_bib26 article-title: Self-assembly of partially hydrolysated α-lactalbumin publication-title: Biotechnology Advances doi: 10.1016/j.biotechadv.2007.07.006 – volume: 4 start-page: 114 year: 2012 ident: 10.1016/j.foodhyd.2021.106710_bib28 article-title: Better nutrients and therapeutics delivery in food through nanotechnology publication-title: Food Engineering Reviews doi: 10.1007/s12393-012-9050-3 – volume: 1i5 start-page: 73 year: 2010 ident: 10.1016/j.foodhyd.2021.106710_bib37 article-title: Milk proteins as vehicles for bioactives publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/j.cocis.2009.11.002 – volume: 179 start-page: 280 year: 2019 ident: 10.1016/j.foodhyd.2021.106710_bib48 article-title: Casein nanomicelle as an emerging biomaterial – a comprehensive review publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2019.03.051 – volume: 24 start-page: 735 year: 2010 ident: 10.1016/j.foodhyd.2021.106710_bib56 article-title: Thermally-induced protein-polyphenol co-assemblies: Beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2010.03.015 – volume: 73 start-page: 294 year: 2006 ident: 10.1016/j.foodhyd.2021.106710_bib25 article-title: Disruption and reassociation of casein micelles under high pressure publication-title: Journal of Dairy Research doi: 10.1017/S0022029906001725 – volume: 66 start-page: 4208 year: 2018 ident: 10.1016/j.foodhyd.2021.106710_bib75 article-title: Development of a sono-assembled, bifunctional soy peptide nanoparticle for cellular delivery of hydrophobic active cargos publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.7b05889 – volume: 9 start-page: 1 year: 2008 ident: 10.1016/j.foodhyd.2021.106710_bib50 article-title: Disruption and sedimentation of casein micelles and casein micelle isolates under high-pressure homogenization publication-title: Innovative Food Science and Technologies – volume: 2 start-page: 163 year: 1997 ident: 10.1016/j.foodhyd.2021.106710_bib67 article-title: Conformational transitions provoked by organic solvents in β-lactoglobulin: Can a molten globule like intermediate be induced by the decrease in dielectric constant? publication-title: Folding & Design doi: 10.1016/S1359-0278(97)00023-0 – volume: 60 start-page: 3477 year: 2012 ident: 10.1016/j.foodhyd.2021.106710_bib32 article-title: Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf300307t – volume: 55 start-page: 529 year: 1988 ident: 10.1016/j.foodhyd.2021.106710_bib11 article-title: pH-induced dissociation of bovine casein micelles. I. Analysis of liberated caseins publication-title: Journal of Dairy Research doi: 10.1017/S0022029900033306 – volume: 112 start-page: 106344 year: 2021 ident: 10.1016/j.foodhyd.2021.106710_bib64 article-title: Strategies to utilize naturally occurring protein architectures as nanovehicles for hydrophobic nutraceuticals (a review) publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.106344 – volume: 10 start-page: 521 year: 2019 ident: 10.1016/j.foodhyd.2021.106710_bib4 article-title: Soft-matter approaches for controlling food protein interactions and assembly publication-title: Annual Reviews of Food Science and Technology doi: 10.1146/annurev-food-032818-121907 – start-page: 43 year: 2013 ident: 10.1016/j.foodhyd.2021.106710_bib42 article-title: Milk proteins: Introduction and historical aspects – volume: 254 start-page: 1312 year: 1991 ident: 10.1016/j.foodhyd.2021.106710_bib73 article-title: Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures publication-title: Science doi: 10.1126/science.1962191 – volume: 17 start-page: 196 year: 2006 ident: 10.1016/j.foodhyd.2021.106710_bib19 article-title: Unique milk protein based nanotubes: Food and nanotechnology meet publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2005.12.009 – volume: 12 start-page: 158 year: 2007 ident: 10.1016/j.foodhyd.2021.106710_bib34 article-title: Self-assembly and aggregation of proteins publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/j.cocis.2007.07.010 – volume: 54 start-page: 8288 year: 2005 ident: 10.1016/j.foodhyd.2021.106710_bib68 article-title: Solvent-mediated disruption of bovine casein micelles at alkaline pH publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf061417c – volume: 64 start-page: 74 year: 2014 ident: 10.1016/j.foodhyd.2021.106710_bib38 article-title: Increased loading of vitamin D2 in reassembled casein micelles with temperature-modulated high pressure treatment publication-title: Food Research International doi: 10.1016/j.foodres.2014.06.010 – volume: 29 start-page: 57 year: 2012 ident: 10.1016/j.foodhyd.2021.106710_bib55 article-title: Thermally-induced β-lactoglobulin-EGCG nanovehicles: Loading, stability, sensory and digestive-release study publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2012.01.016 – volume: 57 start-page: 2636 year: 2017 ident: 10.1016/j.foodhyd.2021.106710_bib61 article-title: Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2015.1067594 – volume: 3 start-page: 737 year: 2012 ident: 10.1016/j.foodhyd.2021.106710_bib22 article-title: Stability and bioavailability of vitamin D nanoencapsulated in casein micelles publication-title: Food & Function doi: 10.1039/c2fo10249h – volume: 9 start-page: 9317 year: 2017 ident: 10.1016/j.foodhyd.2021.106710_bib33 article-title: Bioinspired peptosomes with programmed stimuli-responses for sequential drug release and high-performance anticancer therapy publication-title: Nanoscale doi: 10.1039/C7NR00598A – volume: 271 start-page: 707 year: 2019 ident: 10.1016/j.foodhyd.2021.106710_bib15 article-title: Improved stability, epithelial permeability and cellular antioxidant activity of β-carotene via encapsulation by self-assembled α-lactalbumin micelles publication-title: Food Chemistry doi: 10.1016/j.foodchem.2018.07.216 – volume: 87 start-page: 394 year: 2019 ident: 10.1016/j.foodhyd.2021.106710_bib17 article-title: Nanoencapsulation of quercetin and curcumin in casein-based delivery systems publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.08.031 – volume: 55 start-page: 200 year: 2016 ident: 10.1016/j.foodhyd.2021.106710_bib30 article-title: Soy protein nano-aggregates with improved functional properties prepared with sequential pH treatment and ultrasonication publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2015.11.022 – volume: 134 start-page: 2141 year: 2012 ident: 10.1016/j.foodhyd.2021.106710_bib49 article-title: Food protein aggregates as vitamin-matrix carriers: Impact of processing conditions publication-title: Food Chemistry doi: 10.1016/j.foodchem.2012.04.020 – volume: 56 start-page: 417 year: 2016 ident: 10.1016/j.foodhyd.2021.106710_bib7 article-title: Structure of self-assembled native soy globulin in aqueous solution as a function of the concentration and the pH publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2015.12.028 – volume: 6 start-page: 628 year: 2013 ident: 10.1016/j.foodhyd.2021.106710_bib16 article-title: Nanoencapsulation techniques for food bioactive compounds: A review publication-title: Food and Bioprocess Technology doi: 10.1007/s11947-012-0944-0 – volume: 18 start-page: 547 year: 1999 ident: 10.1016/j.foodhyd.2021.106710_bib70 article-title: Methanol-induced unfolding and refolding of cytochrome b5 and its P40V mutant monitored by UV-Visible, CD, and fluorescence spectra publication-title: Journal of Protein Chemistry doi: 10.1023/A:1020699200092 – volume: 38 start-page: 40 year: 2014 ident: 10.1016/j.foodhyd.2021.106710_bib46 article-title: Milk protein-vitamin interactions: Formation of beta-lactoglobulin/folid acid nano-complexes and their impact on in vitro gastro-duodenal proteolysis publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2013.11.010 – volume: 23 start-page: 1120 year: 2009 ident: 10.1016/j.foodhyd.2021.106710_bib78 article-title: Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2008.10.008 – volume: 46 start-page: 347 year: 1979 ident: 10.1016/j.foodhyd.2021.106710_bib29 article-title: Sub-structure of synthetic casein micelles publication-title: Journal of Dairy Research doi: 10.1017/S0022029900017295 – volume: 31 start-page: 265 year: 2011 ident: 10.1016/j.foodhyd.2021.106710_bib39 article-title: High pressure-assisted encapsulation of vitamin D2 in reassembled casein micelles publication-title: High Pressure Research doi: 10.1080/08957959.2011.565057 – volume: 81 start-page: 130 year: 2010 ident: 10.1016/j.foodhyd.2021.106710_bib13 article-title: Flocculation of protein-stabilized oil-in-water emulsions publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2010.06.033 – volume: 129 start-page: 85 year: 2008 ident: 10.1016/j.foodhyd.2021.106710_bib18 article-title: A simple patchy colloid model for the phase behavior of lysozyme dispersions publication-title: Journal of Physical Chemistry doi: 10.1063/1.2951987 – volume: 25 start-page: 7899 year: 2009 ident: 10.1016/j.foodhyd.2021.106710_bib53 article-title: Multiscale characterization of individualized β-lactoglobulin microgels formed upon heat treatment under narrow pH range conditions publication-title: Langmuir doi: 10.1021/la900501n – volume: 40 start-page: 214 year: 2014 ident: 10.1016/j.foodhyd.2021.106710_bib57 article-title: β-Lactoglobulin-naringenin complexes: Nano-vehicles for the delivery of a hydrophobic nutraceutical publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.02.023 – volume: 131 start-page: 108979 year: 2020 ident: 10.1016/j.foodhyd.2021.106710_bib59 article-title: β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies publication-title: Food Research International doi: 10.1016/j.foodres.2020.108979 – volume: 55 start-page: 727 year: 1988 ident: 10.1016/j.foodhyd.2021.106710_bib12 article-title: pH-induced dissociation of bovine casein micelles. II. Mineral solubilization and its relation to casein release publication-title: Journal of Dairy Research doi: 10.1017/S0022029900033306 – volume: 59 start-page: 7324 year: 2011 ident: 10.1016/j.foodhyd.2021.106710_bib71 article-title: Structural rearrangement of ethanol-denatured soy proteins by high hydrostatic pressure treatment publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf201957r – volume: 5 start-page: 2020 year: 2009 ident: 10.1016/j.foodhyd.2021.106710_bib20 article-title: Structural characterization of α-lactalbumin nanotubes publication-title: Soft Matter doi: 10.1039/b815775h – volume: 8 start-page: 4384 year: 2017 ident: 10.1016/j.foodhyd.2021.106710_bib77 article-title: Soy peptide aggregates formed during hydrolysis reduced protein extraction without decreasing their nutritional value publication-title: Food & Function doi: 10.1039/C7FO00812K – volume: 21 start-page: 1171 year: 2003 ident: 10.1016/j.foodhyd.2021.106710_bib74 article-title: Fabrication of novel biomaterials through molecular self-assembly publication-title: Nature Biotechnology doi: 10.1038/nbt874 – volume: 14 start-page: 3 year: 2009 ident: 10.1016/j.foodhyd.2021.106710_bib1 article-title: Bioavailability of nanoparticles in nutrient and nutraceutical delivery publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/j.cocis.2008.01.002 – volume: 20 start-page: 1352 year: 2020 ident: 10.1016/j.foodhyd.2021.106710_bib3 article-title: Enhanced transport of shape and rigidity-tuned α-lactalbumin nanotubes across intestinal mucus and cellular barriers publication-title: Nano Letters doi: 10.1021/acs.nanolett.9b04841 – volume: 91 start-page: 246 year: 2019 ident: 10.1016/j.foodhyd.2021.106710_bib36 article-title: Novel soy β-conglycinin nanoparticles by ethanol-assisted disassembly and reassembly: Outstanding nanocarriers for hydrophobic nutraceuticals publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.01.042 – volume: 91 start-page: 92 year: 2019 ident: 10.1016/j.foodhyd.2021.106710_bib62 article-title: Nanostructured soy proteins: Fabrication and applications as delivery systems for bioactives (a review) publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.01.012 – volume: 21 start-page: 936 year: 2007 ident: 10.1016/j.foodhyd.2021.106710_bib54 article-title: Casein micelle as a natural nano-capsular vehicle for nutraceuticals publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2006.09.006 – volume: 14 start-page: 16 year: 2017 ident: 10.1016/j.foodhyd.2021.106710_bib60 article-title: Nanostructures based on protein self-assembly: From hierarchical construction to bioinspired materials publication-title: Nano Today doi: 10.1016/j.nantod.2017.04.006 – volume: 99 start-page: 4769 year: 2002 ident: 10.1016/j.foodhyd.2021.106710_bib72 article-title: Beyond molecules: Self-assembly of mesoscopic and macroscopic components publication-title: The Proceedings of National Academy Society of the United States of American doi: 10.1073/pnas.082065899 – volume: 61 start-page: 6036 year: 2013 ident: 10.1016/j.foodhyd.2021.106710_bib45 article-title: Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf400752a – volume: 7 start-page: 67 year: 1999 ident: 10.1016/j.foodhyd.2021.106710_bib23 article-title: Alcohol-induced denaturation of β-lactoglobulin: A close correlation to the alcohol-induced α-helix formation of melittin publication-title: Bioorganic & Medicinal Chemistry doi: 10.1016/S0968-0896(98)00219-3 – volume: 25 start-page: 1270 year: 2011 ident: 10.1016/j.foodhyd.2021.106710_bib79 article-title: Re-assembled casein micelles and casein nanoparticles as nano-vehicles for ω-3 polyunsaturated fatty acids publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2010.11.025 – volume: 522 start-page: 172 year: 2017 ident: 10.1016/j.foodhyd.2021.106710_bib65 article-title: Protein-based nanoparticles: From preparation to encapsulation of active molecules publication-title: International Journal of Pharmaceutics doi: 10.1016/j.ijpharm.2017.01.067 – volume: 12 start-page: 416 year: 2011 ident: 10.1016/j.foodhyd.2021.106710_bib9 article-title: Processing of phosphocasein dispersions by dynamic high pressure: Effects on the dispersion physico-chemical characteristics and the binding of α-tocopherol acetate to casein micelles publication-title: Innovative Food Science & Emerging Technologies doi: 10.1016/j.ifset.2011.07.007 – volume: 10 start-page: 6820 year: 2014 ident: 10.1016/j.foodhyd.2021.106710_bib44 article-title: pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity publication-title: Soft Matter doi: 10.1039/C4SM00239C – volume: 17 start-page: 272 year: 2006 ident: 10.1016/j.foodhyd.2021.106710_bib6 article-title: Food protein-based materials as nutraceutical delivery systems publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2005.12.011 – volume: 67 start-page: 6292 year: 2019 ident: 10.1016/j.foodhyd.2021.106710_bib35 article-title: Novel soy β-conglycinin ‘core-shell’ nanoparticles as outstanding eco-friendly nanocarriers for curcumin publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.8b05822 – volume: 74 start-page: 69 year: 2001 ident: 10.1016/j.foodhyd.2021.106710_bib5 article-title: Dispersion of food proteins in water-alcohol mixed dispersants publication-title: Food Chemistry doi: 10.1016/S0308-8146(01)00099-1 – volume: 61 start-page: 11140 issue: 46 year: 2013 ident: 10.1016/j.foodhyd.2021.106710_bib31 article-title: Emulsifying and interfacial properties of vicilins: Role of conformational flexibility at quaternary and/or tertiary levels publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf403847k – year: 2020 ident: 10.1016/j.foodhyd.2021.106710_bib69 article-title: Whey proteins: Musings on denaturation, aggregate formation and gelation publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2019.1708263 – volume: 5 start-page: 423 year: 2010 ident: 10.1016/j.foodhyd.2021.106710_bib2 article-title: Understanding amyloid aggregation by statistical analysis of atomic force microscopy images publication-title: Nature Nanotechnology doi: 10.1038/nnano.2010.59 – volume: 66 start-page: 12921 year: 2018 ident: 10.1016/j.foodhyd.2021.106710_bib27 article-title: Enzymatically partially hydrolyzed α-lactalbumin peptides for self-assembled micelle formation and their application for coencapsulation of multiple antioxidants publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.8b03798 – volume: 14 start-page: 480 year: 2004 ident: 10.1016/j.foodhyd.2021.106710_bib47 article-title: Self-assembling peptides and proteins for nanotechnological applications publication-title: Current Opinion in Structural Biology doi: 10.1016/j.sbi.2004.06.006 – volume: 20 start-page: 686 year: 2010 ident: 10.1016/j.foodhyd.2021.106710_bib51 article-title: Beta-lactoglobulin-polysaccharide complexes as nanovehicles for hydrophobic nutraceuticals in non-fat foods and clear beverages publication-title: International Dairy Journal doi: 10.1016/j.idairyj.2010.04.001 – volume: 109 start-page: 106106 year: 2020 ident: 10.1016/j.foodhyd.2021.106710_bib63 article-title: Nanocomplexation of proteins with curcumin: From interaction to nanoencapsulation (a reivew) publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.106106 – volume: 46 start-page: 253 year: 1998 ident: 10.1016/j.foodhyd.2021.106710_bib21 article-title: Ethanol-induced conformational transitions in Holo-α-lactalbumin: Spectral and calorimetric studies publication-title: Biopolymers doi: 10.1002/(SICI)1097-0282(19981005)46:4<253::AID-BIP7>3.0.CO;2-O – volume: 8 start-page: 2133 year: 2017 ident: 10.1016/j.foodhyd.2021.106710_bib10 article-title: Re-assembled casein micelles improve in vitro bioavailability of vitamin D in a Caco-2 cell model publication-title: Food & Function doi: 10.1039/C7FO00323D – volume: 10 start-page: 8263 year: 2019 ident: 10.1016/j.foodhyd.2021.106710_bib24 article-title: The construction of enzymolyzed α-lactalbumin based micellar nanoassemblies for encapsulating various kinds of hydrophobic bioactive compounds publication-title: Food & Function doi: 10.1039/C9FO02035G – volume: 56 start-page: 101531 year: 2020 ident: 10.1016/j.foodhyd.2021.106710_bib40 article-title: Whey protein aggregates formed by non-toxic chemical cross-linking as novel carriers for curcumin delivery: Fabrication and characterization publication-title: Journal of Drug Delivery Science and Technology doi: 10.1016/j.jddst.2020.101531 – volume: 70 start-page: 88 year: 2017 ident: 10.1016/j.foodhyd.2021.106710_bib8 article-title: The effect of adding NaCl on the thermal aggregation and gelation of soy protein isolate publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2017.03.024 – volume: 74 start-page: 62 year: 2018 ident: 10.1016/j.foodhyd.2021.106710_bib76 article-title: Soy peptide nanoparticles by ultrasound-induced self-assembly of large peptide aggregates and their role on emulsion stability publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2017.07.021 |
| SSID | ssj0017011 |
| Score | 2.526232 |
| SecondaryResourceType | review_article |
| Snippet | Incorporation of hydrophobic and poorly soluble nutraceuticals into food formulations is among the great challenges in food science and pharmaceutical fields.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106710 |
| SubjectTerms | Assembly bioavailability casein Casein micelles dietary supplements encapsulation hydrocolloids hydrophobicity micelles milk nanofibers nanogels nanotubes Nanovehicles novel foods Nutraceuticals soy protein isolate Soy proteins water solubility whey protein isolate Whey proteins |
| Title | Assembly of food proteins for nano- encapsulation and delivery of nutraceuticals (a mini-review) |
| URI | https://dx.doi.org/10.1016/j.foodhyd.2021.106710 https://www.proquest.com/docview/2524263342 |
| Volume | 117 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7137 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017011 issn: 0268-005X databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg4wEeJj7F2EBG4gE0udR2nDiP0zQ0EJqQKKhvwUltbVNJprRF47_fne2kLR8aIPEStVGcs-7n2Hfn8-8IeSFTn7WYM6XMiCWlkazUKmGw9mTcliZJPU_35_fZyYmeTPIPsXDh3JcTyOpaX17mF_8VargHYOPR2b-Au38p3IDfADpcAXa4_hHwuI37tZz5nXOHnMWeigEzYTCjsDZ1w_ahvwbc45AH5_cPpnaGGRqBX3q5aPswt4_Kmn2kIGHtOvXsqrgnyDj9PoWVEMZUczbtrfRxjEUfni5NzY7teoRB8D6_LYa9uqMvqzyjuWdshadGahIWkjB76kwy8Hqzjek1nM38aaoOUYPzIWoCOjlEyUMktItprpss2B9RHooTSBoFTthNsiUylesB2Tp4ezR5128dZSNfdLnv3-rY1utfCvudQfLD0uztjfFdsh0dBXoQAL5Hbtj6PrmzRh_5gHzpoKaNoyiTdlDDv5Z6qOkG1BSgph3U2GoTavrS0DWgXz0kn94cjQ-PWayYwSqYehescsbpvBLOSi7BkuPCYA15-PiETVUFylFCSTfileW65IZbyytZqdLlwoBjLh-RQd3U9jGhiXW6lNylKpkmqcu1MkamTnGD_EhC75CkU1tRRTp5rGoyK7q8wfMiartAbRdB2ztk2De7CHwq1zXQHSZFNAqDsVfAQLqu6fMOwwImTdwJM7VtlvNCKF-oQCbiyb-_fpfcXn0te2SwaJf2KblVfVuczdtncVheAdlAk-o |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assembly+of+food+proteins+for+nano-+encapsulation+and+delivery+of+nutraceuticals+%28a+mini-review%29&rft.jtitle=Food+hydrocolloids&rft.au=Tang%2C+Chuan-He&rft.date=2021-08-01&rft.pub=Elsevier+Ltd&rft.issn=0268-005X&rft.eissn=1873-7137&rft.volume=117&rft_id=info:doi/10.1016%2Fj.foodhyd.2021.106710&rft.externalDocID=S0268005X21001260 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-005X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-005X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-005X&client=summon |