Layer structure of De Bruijn and Kautz digraphs. An application to deflection routing

In the main part of this paper we present polynomial expressions for the cardinalities of some sets of interest of the nice distance-layer structure of the well-known De Bruijn and Kautz digraphs. More precisely, given a vertex v, let Si⋆ (v) be the set of vertices at distance i from v. We show that...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electronic notes in discrete mathematics Ročník 54; s. 157 - 162
Hlavní autori: Fàbrega, J., Martí-Farré, J., Muñoz, X.
Médium: Journal Article Publikácia
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.10.2016
Predmet:
ISSN:1571-0653, 1571-0653
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the main part of this paper we present polynomial expressions for the cardinalities of some sets of interest of the nice distance-layer structure of the well-known De Bruijn and Kautz digraphs. More precisely, given a vertex v, let Si⋆ (v) be the set of vertices at distance i from v. We show that |Si⋆(v)|=di−ai−1di−1−⋯−a1d−a0, where d is the degree of the digraph and the coefficients ak∈{0,1} are explicitly calculated. Analogously, let w be a vertex adjacent from v such that Si⋆(v)∩Sj⁎(w)≠∅ for some j. We prove that |Si⋆(v)∩Sj⁎(w)|=di−bi−1di−1−…−b1d−b0, where the coefficients bt∈{0,1} are determined from the coefficients ak of the polynomial expression of |Si⋆(v)|. An application to deflection routing in De Bruijn and Kautz networks serves as motivation for our study. It is worth-mentioning that our analysis can be extended to other families of digraphs on alphabet or to general iterated line digraphs.
AbstractList In the main part of this paper we present polynomial expressions for the cardinalities of some sets of interest of the nice distance-layer structure of the well-known De Bruijn and Kautz digraphs. More precisely, given a vertex $v$, let $S_{i}^star(v)$ be the set of vertices at distance $i$ from $v$. We show that $|S_{i}^star(v)|=d^i-a_{i-1}d^{i-1}-cdots -a_{1} d-a_{0}$, where $d$ is the degree of the digraph and the coefficients $a_{k}in{0,1}$ are explicitly calculated. Analogously, let $w$ be a vertex adjacent from $v$ such that $S_{i}^star(v)cap S_j^{ast}(w)neq emptyset$ for some $j$. We prove that $big |S_{i}^star(v) cap S_j^{ast}(w) big |=d^i-b_{i-1}d^{i-1}-ldots -b_{1} d-b_{0},$ where the coefficients $b_{t}in{0,1}$ are determined from the coefficients $a_k$ of the polynomial expression of $|S_{i}^star(v)|$. An application to deflection routing in De Bruijn and Kautz networks serves as motivation for our study. It is worth-mentioning that our analysis can be extended to other families of digraphs on alphabet or to general iterated line digraphs. Peer Reviewed
In the main part of this paper we present polynomial expressions for the cardinalities of some sets of interest of the nice distance-layer structure of the well-known De Bruijn and Kautz digraphs. More precisely, given a vertex v, let Si⋆ (v) be the set of vertices at distance i from v. We show that |Si⋆(v)|=di−ai−1di−1−⋯−a1d−a0, where d is the degree of the digraph and the coefficients ak∈{0,1} are explicitly calculated. Analogously, let w be a vertex adjacent from v such that Si⋆(v)∩Sj⁎(w)≠∅ for some j. We prove that |Si⋆(v)∩Sj⁎(w)|=di−bi−1di−1−…−b1d−b0, where the coefficients bt∈{0,1} are determined from the coefficients ak of the polynomial expression of |Si⋆(v)|. An application to deflection routing in De Bruijn and Kautz networks serves as motivation for our study. It is worth-mentioning that our analysis can be extended to other families of digraphs on alphabet or to general iterated line digraphs.
Author Muñoz, X.
Martí-Farré, J.
Fàbrega, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Fàbrega
  fullname: Fàbrega, J.
  email: josep.fabrega@upc.edu
– sequence: 2
  givenname: J.
  surname: Martí-Farré
  fullname: Martí-Farré, J.
  email: jaume.marti@upc.edu
– sequence: 3
  givenname: X.
  surname: Muñoz
  fullname: Muñoz, X.
  email: xavier.munoz@upc.edu
BookMark eNp9kMtKAzEUhoNUsFVfwFVeoGOSuWQG3NR6xYIbuw6Z5KRmaGdKkhHq05tpC4qLLg7nAt_h55ugUdu1gNANJQkltLhtEmj1JmFxTkiVEFaeoTHNOZ2SIk9Hf-YLNPG-ISQtKc_HaLmQO3DYB9er0DvAncEPgO9db5sWy1bjN9mHb6ztysntp0_wLJ6327VVMtiuxaHDGswa1H5zXR9su7pC50auPVwf-yVaPj1-zF-mi_fn1_lsMVUs52GqpDE6L0mhq4rxjGU1Z7Koa1brtEiBZll8bQrNGasMJwBlVaaVNiCJkozJ9BLRw1_leyUcKHAxluik_V2GYoQzwUpWFjwy7Mi4znsHRmyd3Ui3E5SIQaZoxCBTDDIFqUSUGaHyH6Rs2AsITtr1afTugEIU8WXBCa8stAq0jRmD0J09hf8AitmTTg
CitedBy_id crossref_primary_10_1002_net_22177
Cites_doi 10.1109/TC.1984.1676455
10.1016/S0166-218X(98)00120-6
10.1109/TCYB.2014.2360680
10.1016/0166-218X(92)90135-W
10.14257/ijfgcn.2015.8.1.23
10.1109/TCOM.1964.1088883
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Copyright 2016 Elsevier B.V.
Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID AAYXX
CITATION
XX2
DOI 10.1016/j.endm.2016.09.028
DatabaseName CrossRef
Recercat
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1571-0653
EndPage 162
ExternalDocumentID oai_recercat_cat_2072_282867
10_1016_j_endm_2016_09_028
S1571065316301226
GrantInformation_xml – fundername: Ministerio de Economía y Competitividad
  grantid: MTM2014-60127-P
  funderid: http://dx.doi.org/10.13039/501100003329
– fundername: Catalan Research Council
  grantid: 2014-SGR-1147
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACXMD
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGVJ
AIKHN
AITUG
AJMQA
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
M41
MHUIS
MO0
M~E
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
XX2
ID FETCH-LOGICAL-c257t-caffd5806d9927424b72a6bb2bd363e144deff6d7229f70ee89839dfea0ca22a3
ISSN 1571-0653
IngestDate Fri Nov 07 13:53:54 EST 2025
Sat Nov 29 01:47:08 EST 2025
Tue Nov 18 22:41:10 EST 2025
Fri Feb 23 02:23:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords General iterated line digraphs
Deflection routing
De Bruijn and Kautz digraphs
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-caffd5806d9927424b72a6bb2bd363e144deff6d7229f70ee89839dfea0ca22a3
OpenAccessLink https://recercat.cat/handle/2072/282867
PageCount 6
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_282867
crossref_primary_10_1016_j_endm_2016_09_028
crossref_citationtrail_10_1016_j_endm_2016_09_028
elsevier_sciencedirect_doi_10_1016_j_endm_2016_09_028
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Electronic notes in discrete mathematics
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Haeri, Trajkovic (br0070) 2015; 45
Zheng, Hu, Luo, Wu (br0080) 2015; 8
Baran (br0010) 1964; 12
Bermond, Peyrat (br0020) 1989
Gómez, Fiol, Yebra (br0040) 1992; 37/38
Fàbrega, Muñoz (br0050) 2003; vol. 2790
Gómez, Padró, Perennes (br0030) 1998; 89
Fiol, Yebra, Alegre (br0060) 1984; C-33
Fàbrega (10.1016/j.endm.2016.09.028_br0050) 2003; vol. 2790
Bermond (10.1016/j.endm.2016.09.028_br0020) 1989
Gómez (10.1016/j.endm.2016.09.028_br0030) 1998; 89
Fiol (10.1016/j.endm.2016.09.028_br0060) 1984; C-33
Haeri (10.1016/j.endm.2016.09.028_br0070) 2015; 45
Baran (10.1016/j.endm.2016.09.028_br0010) 1964; 12
Gómez (10.1016/j.endm.2016.09.028_br0040) 1992; 37/38
Zheng (10.1016/j.endm.2016.09.028_br0080) 2015; 8
References_xml – volume: 89
  start-page: 107
  year: 1998
  end-page: 123
  ident: br0030
  article-title: Large Generalized Cycles
  publication-title: Discrete Appl. Math.
– start-page: 279
  year: 1989
  end-page: 294
  ident: br0020
  article-title: De Bruijn and Kautz networks: A competitor for the hypercube?
  publication-title: Hypercube and Distributed Computers
– volume: 12
  start-page: 1
  year: 1964
  end-page: 9
  ident: br0010
  article-title: On distributed communications networks
  publication-title: IEEE Trans. Comm. Sys.
– volume: 37/38
  start-page: 227
  year: 1992
  end-page: 243
  ident: br0040
  article-title: Graphs on alphabets as models for large interconnection networks
  publication-title: Discrete Appl. Math.
– volume: vol. 2790
  start-page: 989
  year: 2003
  end-page: 994
  ident: br0050
  article-title: A study of network capacity under deflection routing schemes
  publication-title: Euro-Par 2003 Parallel Processing
– volume: 45
  start-page: 316
  year: 2015
  end-page: 327
  ident: br0070
  article-title: Intelligent deflection routing in buffer-less networks
  publication-title: IEEE Transactions on Cybernetics
– volume: C-33
  start-page: 400
  year: 1984
  end-page: 403
  ident: br0060
  article-title: Line digraph iterations and the (d, k) digraph problem
  publication-title: IEEE Trans. Comput.
– volume: 8
  start-page: 227
  year: 2015
  end-page: 236
  ident: br0080
  article-title: Study of Deflection Routing from an Information-theoretic Perspective
  publication-title: International Journal of Future Generation Communication and Networking
– volume: C-33
  start-page: 400
  year: 1984
  ident: 10.1016/j.endm.2016.09.028_br0060
  article-title: Line digraph iterations and the (d, k) digraph problem
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.1984.1676455
– volume: 89
  start-page: 107
  year: 1998
  ident: 10.1016/j.endm.2016.09.028_br0030
  article-title: Large Generalized Cycles
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(98)00120-6
– volume: 45
  start-page: 316
  issue: 2
  year: 2015
  ident: 10.1016/j.endm.2016.09.028_br0070
  article-title: Intelligent deflection routing in buffer-less networks
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2360680
– volume: 37/38
  start-page: 227
  year: 1992
  ident: 10.1016/j.endm.2016.09.028_br0040
  article-title: Graphs on alphabets as models for large interconnection networks
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(92)90135-W
– volume: 8
  start-page: 227
  issue: 1
  year: 2015
  ident: 10.1016/j.endm.2016.09.028_br0080
  article-title: Study of Deflection Routing from an Information-theoretic Perspective
  publication-title: International Journal of Future Generation Communication and Networking
  doi: 10.14257/ijfgcn.2015.8.1.23
– start-page: 279
  year: 1989
  ident: 10.1016/j.endm.2016.09.028_br0020
  article-title: De Bruijn and Kautz networks: A competitor for the hypercube?
– volume: 12
  start-page: 1
  year: 1964
  ident: 10.1016/j.endm.2016.09.028_br0010
  article-title: On distributed communications networks
  publication-title: IEEE Trans. Comm. Sys.
  doi: 10.1109/TCOM.1964.1088883
– volume: vol. 2790
  start-page: 989
  year: 2003
  ident: 10.1016/j.endm.2016.09.028_br0050
  article-title: A study of network capacity under deflection routing schemes
SSID ssj0038175
Score 2.0300531
Snippet In the main part of this paper we present polynomial expressions for the cardinalities of some sets of interest of the nice distance-layer structure of the...
SourceID csuc
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 157
SubjectTerms 11 Number theory
11C Polynomials and matrices
12 Field theory and polynomials
12Y05 Computational aspects of field theory and polynomials
Classificació AMS
De Bruijn and Kautz digraphs
Deflection routing
General iterated line digraphs
Matemàtiques i estadística
Matrices
Matrius (Matemàtica)
Polinomis
Polynomials
Teoria de cossos i polinomis
Teoria de nombres
Àlgebra
Àrees temàtiques de la UPC
Title Layer structure of De Bruijn and Kautz digraphs. An application to deflection routing
URI https://dx.doi.org/10.1016/j.endm.2016.09.028
https://recercat.cat/handle/2072/282867
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1571-0653
  dateEnd: 20190331
  omitProxy: false
  ssIdentifier: ssj0038175
  issn: 1571-0653
  databaseCode: AIEXJ
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1571-0653
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0038175
  issn: 1571-0653
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdK4cCFb0T5kg-cqFIlTuIkx0GHEIwJiU3qzXISW2pVkqlNpm0H_gP-Z96znaTb0ARIHBq1bhJXfq_v_fI-fibkTZqW4BdD5uWxDr0ok9JLY8Y9rgJdyEgHvDCNwgfJ4WG6WGRfR6OfXS_M6TqpqvTsLDv5r6KGMRA2ts7-hbj7m8IAvAehwxHEDsc_EvyBPEeGZsMLi9kBQINzrAFolytbePxZts3FtFwarurtDOOCO2lsBKOl0mtl9xDf1G3TebcugD_snFPVjbIFtUswP4C_p997GtihscQk43149rZB3E-zIQy-acyXcw_JIG3S_sopLY6-C2oT6F7MdqMUAe_r3Vzo7Fr7jLW2CZZdWbbgmfrNmDPRcbRjYwPLaO3cdWCN-TVPYIMSq5mqSiQcCLihs3WN6JcZtr_hnDglYFPMNPJb5DZL4gyN5Jcf-51jRy7D2NDvul_oerBsueDVeS7hnHGxbYsduLMDYY4ekHvu2YPuWZ15SEaqekTud_t6UGfmH5Njo0K0VyFaazpX1KoQBRWiRoVor0J0D4YHFaJNTQcVok6FnpDjD_tH7z96bvsNrwA73niF1LqMU5-XWYYJ_ShPmOR5zvIy5KGCJ3G4leZlwlimE1-pNAO0XWol_UIyJsOnZFzVlXpGaBFnJeD2CH1EFOog5zLhSnOpGcwV-RMSdIslCsdNj1ukrEVXhLgSuMACF1j4mYAFnpBpf82JZWa58ey3KAMBMEJtYDEE0qr3H_DF_IQJDEDwZELiTlLCAVELMAVo1w2TPP_H616Qu8N_5iUZg3jVK3KnOG2W281ro4S_AAiaqV8
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layer+structure+of+De+Bruijn+and+Kautz+digraphs.+An+application+to+deflection+routing&rft.jtitle=Electronic+notes+in+discrete+mathematics&rft.au=F%C3%A0brega%2C+J.&rft.au=Mart%C3%AD-Farr%C3%A9%2C+J.&rft.au=Mu%C3%B1oz%2C+X.&rft.date=2016-10-01&rft.pub=Elsevier+B.V&rft.issn=1571-0653&rft.eissn=1571-0653&rft.volume=54&rft.spage=157&rft.epage=162&rft_id=info:doi/10.1016%2Fj.endm.2016.09.028&rft.externalDocID=S1571065316301226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1571-0653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1571-0653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1571-0653&client=summon