An Exact Algorithm for Nonconvex Quadratic Integer Minimization Using Ellipsoidal Relaxations
We propose a branch-and-bound algorithm for minimizing a not necessarily convex quadratic function over integer variables. The algorithm is based on lower bounds computed as continuous minima of the objective function over appropriate ellipsoids. In the nonconvex case, we use ellipsoids enclosing th...
Gespeichert in:
| Veröffentlicht in: | SIAM journal on optimization Jg. 23; H. 3; S. 1867 - 1889 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2013
|
| Schlagworte: | |
| ISSN: | 1052-6234, 1095-7189 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We propose a branch-and-bound algorithm for minimizing a not necessarily convex quadratic function over integer variables. The algorithm is based on lower bounds computed as continuous minima of the objective function over appropriate ellipsoids. In the nonconvex case, we use ellipsoids enclosing the feasible region of the problem. In spite of the nonconvexity, these minima can be computed quickly; the corresponding optimization problems are equivalent to trust-region subproblems. We present several ideas that allow us to accelerate the solution of the continuous relaxation within a branch-and-bound scheme and examine the performance of the overall algorithm by computational experiments. Good computational performance is shown especially for ternary instances. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1052-6234 1095-7189 |
| DOI: | 10.1137/120878495 |