A construction algorithm for dual complex generalized eigenvalue decomposition and its application to blind source separation

Since the generalized eigenvalue problem has a unique and stable solution when the generalized eigenvalues are distinct, which is fundamental to many scientific and engineering applications, in this paper, we study the dual complex generalized eigenvalue decomposition under the condition of distinct...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Signal processing Ročník 240; s. 110342
Hlavní autoři: Wang, Tao, Li, Ying, Zhang, Mingcui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2026
Témata:
ISSN:0165-1684
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Since the generalized eigenvalue problem has a unique and stable solution when the generalized eigenvalues are distinct, which is fundamental to many scientific and engineering applications, in this paper, we study the dual complex generalized eigenvalue decomposition under the condition of distinct standard parts of the generalized eigenvalues. By using the special properties of the dual complex matrix, we establish a sufficient condition for realizing the dual complex generalized eigenvalue decomposition, and transform the dual complex generalized eigenvalue decomposition problem into the equivalent generalized eigenvalue decomposition problem and the dual part construction problem over the complex field. By solving these two problems, we propose a construction algorithm for dual complex generalized eigenvalue decomposition under the condition of distinct standard parts of the generalized eigenvalues. We verify the effectiveness, accuracy and numerical stability of the algorithm by experiment. In addition, we propose a dual complex color image model. Based on this model, we propose a blind source separation algorithm for color images, and show that it has good separation performance for cross-channel mixed color images by experiment.
ISSN:0165-1684
DOI:10.1016/j.sigpro.2025.110342