A construction algorithm for dual complex generalized eigenvalue decomposition and its application to blind source separation

Since the generalized eigenvalue problem has a unique and stable solution when the generalized eigenvalues are distinct, which is fundamental to many scientific and engineering applications, in this paper, we study the dual complex generalized eigenvalue decomposition under the condition of distinct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing Jg. 240; S. 110342
Hauptverfasser: Wang, Tao, Li, Ying, Zhang, Mingcui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.03.2026
Schlagworte:
ISSN:0165-1684
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since the generalized eigenvalue problem has a unique and stable solution when the generalized eigenvalues are distinct, which is fundamental to many scientific and engineering applications, in this paper, we study the dual complex generalized eigenvalue decomposition under the condition of distinct standard parts of the generalized eigenvalues. By using the special properties of the dual complex matrix, we establish a sufficient condition for realizing the dual complex generalized eigenvalue decomposition, and transform the dual complex generalized eigenvalue decomposition problem into the equivalent generalized eigenvalue decomposition problem and the dual part construction problem over the complex field. By solving these two problems, we propose a construction algorithm for dual complex generalized eigenvalue decomposition under the condition of distinct standard parts of the generalized eigenvalues. We verify the effectiveness, accuracy and numerical stability of the algorithm by experiment. In addition, we propose a dual complex color image model. Based on this model, we propose a blind source separation algorithm for color images, and show that it has good separation performance for cross-channel mixed color images by experiment.
ISSN:0165-1684
DOI:10.1016/j.sigpro.2025.110342