On intersection probabilities of four lines inside a planar convex domain
Let $n\geq 2$ random lines intersect a planar convex domain D. Consider the probabilities $p_{nk}$ , $k=0,1, \ldots, {n(n-1)}/{2}$ that the lines produce exactly k intersection points inside D. The objective is finding $p_{nk}$ through geometric invariants of D. Using Ambartzumian’s combinatorial al...
Gespeichert in:
| Veröffentlicht in: | Journal of applied probability Jg. 60; H. 2; S. 504 - 527 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge, UK
Cambridge University Press
01.06.2023
|
| Schlagworte: | |
| ISSN: | 0021-9002, 1475-6072 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Let
$n\geq 2$
random lines intersect a planar convex domain D. Consider the probabilities
$p_{nk}$
,
$k=0,1, \ldots, {n(n-1)}/{2}$
that the lines produce exactly k intersection points inside D. The objective is finding
$p_{nk}$
through geometric invariants of D. Using Ambartzumian’s combinatorial algorithm, the known results are instantly reestablished for
$n=2, 3$
. When
$n=4$
, these probabilities are expressed by new invariants of D. When D is a disc of radius r, the simplest forms of all invariants are found. The exact values of
$p_{3k}$
and
$p_{4k}$
are established. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0021-9002 1475-6072 |
| DOI: | 10.1017/jpr.2022.60 |