SAC: Collaborative learning of structure and content features for Android malware detection framework
With the rapid development of Internet of Things (IoT) technology, Android devices have increasingly become primary targets for malware attacks. Although significant research has been conducted in the field of malware detection, existing methods still face challenges when dealing with complex sample...
Gespeichert in:
| Veröffentlicht in: | Neurocomputing (Amsterdam) Jg. 637; S. 130053 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
07.07.2025
|
| Schlagworte: | |
| ISSN: | 0925-2312 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the rapid development of Internet of Things (IoT) technology, Android devices have increasingly become primary targets for malware attacks. Although significant research has been conducted in the field of malware detection, existing methods still face challenges when dealing with complex samples. In particular, a more comprehensive analysis is required in the domain of feature extraction.
To enhance the accuracy of malware detection, we propose the SAC framework. This method utilizes Dalvik Executable (DEX) files as the data source and achieves deep integration of multi-view features by collaboratively modeling image and graph data types. Specifically, to accurately capture the local features of malware and improve the identification of critical behavioral patterns, we designed a task-oriented convolutional neural network (CNN) named IFNeXt, which integrates visualization analysis with an inverted bottleneck structure. Furthermore, we introduced a dual-channel graph convolutional network (GCN) that models the hierarchical structure of bytecode as a directed graph, capturing the co-occurrence relationships and semantic similarities between method calls. This approach enables a deeper exploration of the global structural features of malware.
The SAC framework fully leverages the complementary advantages of image and graph data structures, providing a more comprehensive characterization of malware features from both content and structural perspectives. Experimental results demonstrate that our method achieves a detection accuracy of 99.43% on multiple real-world public datasets, significantly outperforming existing state-of-the-art detection techniques. This indicates the potential and innovation of our approach in enhancing the security of the Android platform. |
|---|---|
| AbstractList | With the rapid development of Internet of Things (IoT) technology, Android devices have increasingly become primary targets for malware attacks. Although significant research has been conducted in the field of malware detection, existing methods still face challenges when dealing with complex samples. In particular, a more comprehensive analysis is required in the domain of feature extraction.
To enhance the accuracy of malware detection, we propose the SAC framework. This method utilizes Dalvik Executable (DEX) files as the data source and achieves deep integration of multi-view features by collaboratively modeling image and graph data types. Specifically, to accurately capture the local features of malware and improve the identification of critical behavioral patterns, we designed a task-oriented convolutional neural network (CNN) named IFNeXt, which integrates visualization analysis with an inverted bottleneck structure. Furthermore, we introduced a dual-channel graph convolutional network (GCN) that models the hierarchical structure of bytecode as a directed graph, capturing the co-occurrence relationships and semantic similarities between method calls. This approach enables a deeper exploration of the global structural features of malware.
The SAC framework fully leverages the complementary advantages of image and graph data structures, providing a more comprehensive characterization of malware features from both content and structural perspectives. Experimental results demonstrate that our method achieves a detection accuracy of 99.43% on multiple real-world public datasets, significantly outperforming existing state-of-the-art detection techniques. This indicates the potential and innovation of our approach in enhancing the security of the Android platform. |
| ArticleNumber | 130053 |
| Author | Jia, Dongqing Yang, Jin Ren, Hang Liang, Huijia Wang, Xin |
| Author_xml | – sequence: 1 givenname: Jin surname: Yang fullname: Yang, Jin organization: School of Cyber Science and Engineering, Sichuan University, Chengdu, 610207, Sichuan, China – sequence: 2 givenname: Huijia surname: Liang fullname: Liang, Huijia email: huijia.leung@foxmail.com organization: School of Cyber Science and Engineering, Sichuan University, Chengdu, 610207, Sichuan, China – sequence: 3 givenname: Hang surname: Ren fullname: Ren, Hang organization: Key Laboratory of Data Protection and Intelligent Management of the Ministry of Education, Chengdu, 610207, China – sequence: 4 givenname: Dongqing surname: Jia fullname: Jia, Dongqing organization: School of Cyber Science and Engineering, Sichuan University, Chengdu, 610207, Sichuan, China – sequence: 5 givenname: Xin orcidid: 0000-0002-8284-8640 surname: Wang fullname: Wang, Xin email: xinwang201314@126.com organization: School of Cyber Science and Engineering, Sichuan University, Chengdu, 610207, Sichuan, China |
| BookMark | eNp9kMtOwzAURL0oEm3hD1j4BxL8iOOEBVIV8ZIqsQDWluNcI5fURrbbir8nVVizutLozmjmrNDCBw8I3VBSUkLr213p4WDCvmSEiZJyQgRfoCVpmSgYp-wSrVLaEUIlZe0Swdumu8NdGEfdh6izOwIeQUfv_CcOFqccDyYfImDtB2yCz-AztqDPWsI2RLzxQwxuwHs9nvT0OEAGk13w2Ea9h1OIX1fowuoxwfXfXaOPx4f37rnYvj69dJttYZiQuRADaYUU3PBGV6Qhhoiq7kXfCFn3UhitRS2rlrDe6rYW3JqWi4FbKSk0jRF8jao518SQUgSrvqPb6_ijKFFnPGqnZjzqjEfNeCbb_WyDqdvRQVTJOPAGBhenKWoI7v-AXypCdNA |
| Cites_doi | 10.1109/TIFS.2023.3302509 10.1023/B:VLSI.0000028532.53893.82 10.1016/j.cose.2020.102037 10.1016/j.knosys.2022.109512 10.1016/j.cose.2017.10.007 10.1007/s40747-021-00560-1 10.1016/j.knosys.2024.111991 10.1016/j.neucom.2020.10.054 10.1016/j.dcan.2021.11.007 10.1016/j.neucom.2024.128010 10.1016/j.future.2018.12.028 10.1109/TII.2017.2789219 10.1016/j.cose.2018.10.001 10.1016/j.ins.2020.08.082 10.1016/j.cose.2020.101740 10.3390/app10144966 10.1109/ACCESS.2021.3063748 10.1145/3073559 10.1145/3417978 10.1109/ACCESS.2020.3033026 10.1016/j.compeleceng.2019.06.014 10.1016/j.neucom.2023.126904 10.1007/s10922-021-09634-4 10.1016/j.future.2019.07.070 10.1016/j.eswa.2022.118705 10.1016/j.cose.2021.102386 10.1109/TIFS.2016.2523912 10.3390/sym13071107 10.1016/j.cose.2022.102915 10.1145/3313391 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2025.130053 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_neucom_2025_130053 S0925231225007258 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYFN AAYWO ABBOA ABCQJ ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c257t-5d095753c38a4080c0546b5b8576b75caa5674902bfa9653fc935d3f771e88c53 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001458014800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 06:55:42 EST 2025 Sat May 24 17:04:31 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Graph convolutional network Malware detection Convolutional neural network Android |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c257t-5d095753c38a4080c0546b5b8576b75caa5674902bfa9653fc935d3f771e88c53 |
| ORCID | 0000-0002-8284-8640 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2025_130053 elsevier_sciencedirect_doi_10_1016_j_neucom_2025_130053 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-07 |
| PublicationDateYYYYMMDD | 2025-07-07 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Mikolov (b59) 2013 Amin, Tanveer, Tehseen, Khan, Khan, Anwar (b4) 2020; 102 Jha, Prashar, Long, Taniar (b11) 2020; 99 Song, Han, Huang (b17) 2021 Daoudi, Samhi, Kabore, Allix, Bissyandé, Klein (b38) 2021; vol. 1482 Xu, Li, Deng (b48) 2016; 11 Nisa, Shah, Kanwal, Raza, Khan, Damasevicius, Blazauskas (b36) 2020; 10 Li, Sun, Yan, Li, Srisa-an, Ye (b23) 2018; 14 Yoo, Kim, Kim, Kang (b31) 2021; 546 Zhang, Thing, Cheng (b27) 2019; 80 Chen, Mao, Yang, Lv, Zhu (b26) 2018; 2018 Woo, Debnath, Hu, Chen, Liu, Kweon, Xie (b53) 2023 Wang, Cui, Yuan, Shi, Huang (b6) 2024; 598 Frenklach, Cohen, Shabtai, Puzis (b46) 2021; 109 Ranjan, Sanyal, Talukdar (b62) 2020 Liu, Mao, Wu, Feichtenhofer, Darrell, Xie (b52) 2022 Freitas, Duggal, Chau (b16) 2022 Zhang, Ren, Zhu, Ren (b25) 2019; 95 Rizvi, Aslam, Shahzad, Saleem, Fraz (b30) 2022; 8 Wu, Li, Zou, Yang, Zhang, Jin (b42) 2019 Brody, Alon, Yahav (b61) 2021 Vu, Jung (b37) 2021; 9 He, Zhang, Ren, Sun (b56) 2016 Gao, Huang, Li, Wu, Wu, Yuan (b21) 2024 Qiu, Zhang, Luo, Pan, Nepal, Xiang (b5) 2021; 53 Yuan, Wang, Liu, Guo, Wu, Bao (b35) 2020; 92 Zixuan, Chen (b8) 2022; 30 Wenna, Guojun, Jianming, Huanguo, Shilü (b13) 2019; 30 Xu, Li, Deng, Chen (b24) 2018 Liu, Lin, Cao, Hu, Wei, Zhang, Lin, Guo (b55) 2021 Ministry of Industry and Information Technology (b1) 2011 Kipf, Welling (b20) 2016 Ring, Schlör, Wunderlich, Landes, Hotho (b9) 2021; 109 Reza (b51) 2004; 38 Yang, Du, Yang, Liu (b43) 2021; 10 Zhang, Luktarhan, Ding, Lu (b49) 2021; 13 Han, Jian, Wang (b58) 2022; 253 Ye, Li, Adjeroh, Iyengar (b2) 2017; 50 Mahdavifar, Abdul Kadir, Fatemi, Alhadidi, Ghorbani (b63) 2020 Gao, Cai, Yin (b19) 2023 Zhu, Zhang, Yan, Chen, Gao (b7) 2022; 8 Yadav, Menon, Ravi, Vishvanathan, Pham (b18) 2020; 115 V.K.V., J.C.D. (b47) 2021 Cai, Jiang, Gao, Li, Yuan (b45) 2021; 423 Amin, Shah, Sharif, Ali, Kim, Anwar (b28) 2019 Silva, Ferreira da Costa, Rocha (b14) 2020 Xie, Girshick, Dollar, Tu, He (b54) 2017 Mahdavifar, Alhadidi, Ghorbani (b64) 2022; 30 Li, Cheng, Wu, Yuan, Gao, Yuan, Luo (b15) 2023 Zhang, Zhang, Zhong (b44) 2020 Kang, Jang, Li, Jeong, Sung (b10) 2019; 77 Onwuzurike, Mariconti, Andriotis, Cristofaro, Ross, Stringhini (b41) 2019; 22 Mantoo, Khurana (b3) 2020 Bai, Xie, Di, Ye (b29) 2020; 8 Tan, Le (b39) 2019 Hamilton, Ying, Leskovec (b60) 2017 Huang, Kao (b34) 2018 Ding, Xia, Chen, Li (b12) 2018; 73 Liu, Li, Liu, Li, Bao (b40) 2024; 299 Miranda-García, Zubillaga Rego, Pastor-López, Sanz, Tellaeche, Gaviria, Bringas (b50) 2024; 563 Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby (b66) 2020 Zhu, Gu, Wang, Xu, Sheng (b33) 2023; 212 Yang, Wang, Xu, Xu, Chen (b32) 2022; 123 Wang (b57) 2018 Arp, Spreitzenbarth, Huebner, Gascon, Rieck (b22) 2014 Simonyan, Zisserman (b65) 2015 Xie (10.1016/j.neucom.2025.130053_b54) 2017 Zhu (10.1016/j.neucom.2025.130053_b33) 2023; 212 Jha (10.1016/j.neucom.2025.130053_b11) 2020; 99 Kang (10.1016/j.neucom.2025.130053_b10) 2019; 77 Han (10.1016/j.neucom.2025.130053_b58) 2022; 253 Liu (10.1016/j.neucom.2025.130053_b52) 2022 Liu (10.1016/j.neucom.2025.130053_b55) 2021 Zhang (10.1016/j.neucom.2025.130053_b25) 2019; 95 Wang (10.1016/j.neucom.2025.130053_b6) 2024; 598 Ding (10.1016/j.neucom.2025.130053_b12) 2018; 73 Wu (10.1016/j.neucom.2025.130053_b42) 2019 Gao (10.1016/j.neucom.2025.130053_b19) 2023 Amin (10.1016/j.neucom.2025.130053_b28) 2019 Zhang (10.1016/j.neucom.2025.130053_b27) 2019; 80 He (10.1016/j.neucom.2025.130053_b56) 2016 Dosovitskiy (10.1016/j.neucom.2025.130053_b66) 2020 Liu (10.1016/j.neucom.2025.130053_b40) 2024; 299 Gao (10.1016/j.neucom.2025.130053_b21) 2024 Frenklach (10.1016/j.neucom.2025.130053_b46) 2021; 109 Yoo (10.1016/j.neucom.2025.130053_b31) 2021; 546 Wang (10.1016/j.neucom.2025.130053_b57) 2018 Li (10.1016/j.neucom.2025.130053_b15) 2023 Xu (10.1016/j.neucom.2025.130053_b48) 2016; 11 Kipf (10.1016/j.neucom.2025.130053_b20) 2016 Mikolov (10.1016/j.neucom.2025.130053_b59) 2013 Qiu (10.1016/j.neucom.2025.130053_b5) 2021; 53 Ye (10.1016/j.neucom.2025.130053_b2) 2017; 50 Chen (10.1016/j.neucom.2025.130053_b26) 2018; 2018 Song (10.1016/j.neucom.2025.130053_b17) 2021 Vu (10.1016/j.neucom.2025.130053_b37) 2021; 9 Ministry of Industry and Information Technology (10.1016/j.neucom.2025.130053_b1) 2011 Bai (10.1016/j.neucom.2025.130053_b29) 2020; 8 Zhu (10.1016/j.neucom.2025.130053_b7) 2022; 8 Hamilton (10.1016/j.neucom.2025.130053_b60) 2017 Rizvi (10.1016/j.neucom.2025.130053_b30) 2022; 8 Daoudi (10.1016/j.neucom.2025.130053_b38) 2021; vol. 1482 Cai (10.1016/j.neucom.2025.130053_b45) 2021; 423 V.K.V. (10.1016/j.neucom.2025.130053_b47) 2021 Silva (10.1016/j.neucom.2025.130053_b14) 2020 Li (10.1016/j.neucom.2025.130053_b23) 2018; 14 Simonyan (10.1016/j.neucom.2025.130053_b65) 2015 Mantoo (10.1016/j.neucom.2025.130053_b3) 2020 Reza (10.1016/j.neucom.2025.130053_b51) 2004; 38 Huang (10.1016/j.neucom.2025.130053_b34) 2018 Onwuzurike (10.1016/j.neucom.2025.130053_b41) 2019; 22 Brody (10.1016/j.neucom.2025.130053_b61) 2021 Ranjan (10.1016/j.neucom.2025.130053_b62) 2020 Nisa (10.1016/j.neucom.2025.130053_b36) 2020; 10 Mahdavifar (10.1016/j.neucom.2025.130053_b63) 2020 Miranda-García (10.1016/j.neucom.2025.130053_b50) 2024; 563 Zhang (10.1016/j.neucom.2025.130053_b49) 2021; 13 Amin (10.1016/j.neucom.2025.130053_b4) 2020; 102 Mahdavifar (10.1016/j.neucom.2025.130053_b64) 2022; 30 Xu (10.1016/j.neucom.2025.130053_b24) 2018 Woo (10.1016/j.neucom.2025.130053_b53) 2023 Wenna (10.1016/j.neucom.2025.130053_b13) 2019; 30 Yang (10.1016/j.neucom.2025.130053_b43) 2021; 10 Ring (10.1016/j.neucom.2025.130053_b9) 2021; 109 Yuan (10.1016/j.neucom.2025.130053_b35) 2020; 92 Zixuan (10.1016/j.neucom.2025.130053_b8) 2022; 30 Freitas (10.1016/j.neucom.2025.130053_b16) 2022 Tan (10.1016/j.neucom.2025.130053_b39) 2019 Yadav (10.1016/j.neucom.2025.130053_b18) 2020; 115 Zhang (10.1016/j.neucom.2025.130053_b44) 2020 Arp (10.1016/j.neucom.2025.130053_b22) 2014 Yang (10.1016/j.neucom.2025.130053_b32) 2022; 123 |
| References_xml | – year: 2014 ident: b22 article-title: Drebin: Effective and explainable detection of android malware in your pocket publication-title: 21st Annual Network and Distributed System Security Symposium – volume: 563 year: 2024 ident: b50 article-title: Deep learning applications on cybersecurity: A practical approach publication-title: Neurocomputing – volume: 77 start-page: 366 year: 2019 end-page: 375 ident: b10 article-title: Long short-term memory-based malware classification method for information security publication-title: Comput. Electr. Eng. – volume: 30 start-page: 67 year: 2022 end-page: 72 ident: b8 article-title: BiLSTM malicious code classification based on multifeature fusion publication-title: Electron. Des. Eng. – volume: 14 start-page: 3216 year: 2018 end-page: 3225 ident: b23 article-title: Significant permission identification for machine-learning-based android malware detection publication-title: IEEE Trans. Ind. Inform. – start-page: 6105 year: 2019 end-page: 6114 ident: b39 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks publication-title: Proceedings of the International Conference on Machine Learning – volume: 50 year: 2017 ident: b2 article-title: A survey on malware detection using data mining techniques publication-title: ACM Comput. Surv. – start-page: 515 year: 2020 end-page: 522 ident: b63 article-title: Dynamic android malware category classification using semi-supervised deep learning publication-title: 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber SciTech – year: 2023 ident: b15 article-title: Black-box adversarial example attack towards FCG based android malware detection under incomplete feature information publication-title: Proceedings of the 32nd USENIX Conference on Security Symposium – start-page: 139 year: 2019 end-page: 150 ident: b42 article-title: MalScan: Fast market-wide mobile malware scanning by social-network centrality analysis publication-title: 2019 34th IEEE/ACM International Conference on Automated Software Engineering – start-page: 471 year: 2020 end-page: 482 ident: b14 article-title: KNN applied to PDG for source code similarity classification publication-title: Intelligent Systems: 9th Brazilian Conference, BRACIS 2020, Rio Grande, Brazil, October (2020) 20–23, Proceedings, Part II – volume: 11 start-page: 1252 year: 2016 end-page: 1264 ident: b48 article-title: ICCDetector: ICC-based malware detection on android publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 299 year: 2024 ident: b40 article-title: Evolving malware detection through instant dynamic graph inverse reinforcement learning publication-title: Knowl.-Based Syst. – volume: vol. 1482 year: 2021 ident: b38 article-title: DexRay: A simple, yet effective deep learning approach to android malware detection based on image representation of bytecode publication-title: Deployable Machine Learning for Security Defense. MLHat 2021. Communications in Computer and Information Science – volume: 10 year: 2021 ident: b43 article-title: Android malware detection based on structural features of the function call graph publication-title: Electronics – year: 2016 ident: b20 article-title: Semi-supervised classification with graph convolutional networks – start-page: 473 year: 2018 end-page: 487 ident: b24 article-title: DeepRefiner: Multi-layer android malware detection system applying deep neural networks publication-title: 2018 3rd IEEE European Symposium on Security and Privacy (EuroS & P 2018) – volume: 53 year: 2021 ident: b5 article-title: A survey of android malware detection with deep neural models publication-title: ACM Comput. Surv. – start-page: 164 year: 2021 end-page: 165 ident: b17 article-title: IMGDroid: A static analyzer for detecting image loading defects in android applications publication-title: 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings – start-page: 5987 year: 2017 end-page: 5995 ident: b54 article-title: Aggregated residual transformations for deep neural networks publication-title: 30th IEEE Conference on Computer Vision and Pattern Recognition – volume: 30 start-page: 2229 year: 2019 end-page: 2267 ident: b13 article-title: Research on malware evolution and tracing technology publication-title: J. Softw. – volume: 22 start-page: 14 year: 2019 ident: b41 article-title: MaMaDroid: Detecting android malware by building Markov chains of behavioral models (extended version) publication-title: ACM Trans. Priv. Secur. – start-page: 11976 year: 2022 end-page: 11986 ident: b52 article-title: A ConvNet for the 2020s publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 16133 year: 2023 end-page: 16142 ident: b53 article-title: ConvNeXt V2: Co-designing and scaling ConvNets with masked autoencoders publication-title: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 8 start-page: 485 year: 2022 end-page: 491 ident: b7 article-title: N-gram MalGAN: Evading machine learning detection via feature n-gram publication-title: Digit. Commun. Netw. – volume: 123 year: 2022 ident: b32 article-title: An android malware detection and classification approach based on contrastive learning publication-title: Comput. Secur. – year: 2018 ident: b57 article-title: GLUE: A multi-task benchmark and analysis platform for natural language understanding – volume: 92 year: 2020 ident: b35 article-title: Byte-level malware classification based on Markov images and deep learning publication-title: Comput. Secur. – volume: 109 year: 2021 ident: b46 article-title: Android malware detection via an app similarity graph publication-title: Comput. Secur. – year: 2011 ident: b1 article-title: Mobile internet malicious program description format – volume: 38 start-page: 35 year: 2004 end-page: 44 ident: b51 article-title: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement publication-title: J. VLSI Signal Process. Syst. Signal, Image Video Technol. – volume: 73 start-page: 73 year: 2018 end-page: 86 ident: b12 article-title: A malware detection method based on family behavior graph publication-title: Comput. Secur. – volume: 546 start-page: 420 year: 2021 end-page: 435 ident: b31 article-title: AI-HydRa: Advanced hybrid approach using random forest and deep learning for malware classification publication-title: Inform. Sci. – volume: 598 year: 2024 ident: b6 article-title: A review of deep learning-based malware detection techniques publication-title: Neurocomputing – volume: 102 start-page: 112 year: 2020 end-page: 126 ident: b4 article-title: Static malware detection and attribution in android byte-code through an end-to-end deep system publication-title: Future Gener. Comput. Syst. – start-page: 3948 year: 2022 end-page: 3952 ident: b16 article-title: MalNet: A large-scale image database of malicious software publication-title: Proceedings of the 31st ACM International Conference on Information & Knowledge Management – volume: 80 start-page: 120 year: 2019 end-page: 133 ident: b27 article-title: A scalable and extensible framework for android malware detection and family attribution publication-title: Comput. Secur. – volume: 115 year: 2020 ident: b18 article-title: EfficientNet convolutional neural networks-based android malware detection publication-title: Comput. Secur. – volume: 9 start-page: 39680 year: 2021 end-page: 39694 ident: b37 article-title: AdMat: A CNN-on-matrix approach to android malware detection and classification publication-title: IEEE Access – volume: 2018 year: 2018 ident: b26 article-title: TinyDroid: A lightweight and efficient model for android malware detection and classification publication-title: Mob. Inf. Syst. – volume: 30 start-page: 22 year: 2022 ident: b64 article-title: Effective and efficient hybrid android malware classification using pseudo-label stacked auto-encoder publication-title: J. Netw. Syst. Manage. – start-page: 757 year: 2020 end-page: 770 ident: b44 article-title: Enhancing state-of-the-art classifiers with API semantics to detect evolved android malware publication-title: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security – year: 2013 ident: b59 article-title: Efficient estimation of word representations in vector space – year: 2020 ident: b66 article-title: An image is worth 16x16 words: Transformers for image recognition at scale – volume: 253 year: 2022 ident: b58 article-title: ConvUNeXt: An efficient convolution neural network for medical image segmentation publication-title: Knowl.-Based Syst. – start-page: 31 year: 2020 end-page: 45 ident: b3 article-title: Static, dynamic and intrinsic features based android malware detection using machine learning publication-title: Proceedings of ICRIC 2019: Recent Innovations in Computing – volume: 212 year: 2023 ident: b33 article-title: Android malware detection based on multi-head squeeze-and-excitation residual network publication-title: Expert Syst. Appl. – year: 2021 ident: b61 article-title: How attentive are graph attention networks? – start-page: 770 year: 2016 end-page: 778 ident: b56 article-title: Deep residual learning for image recognition publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition – year: 2015 ident: b65 article-title: Very deep convolutional networks for large-scale image recognition publication-title: 3rd International Conference on Learning Representations – volume: 95 start-page: 548 year: 2019 end-page: 559 ident: b25 article-title: SaaS: A situational awareness and analysis system for massive android malware detection publication-title: Future Gener. Comput. Syst. – volume: 109 year: 2021 ident: b9 article-title: Malware detection on windows audit logs using LSTMs publication-title: Comput. Secur. – start-page: 5470 year: 2020 end-page: 5477 ident: b62 article-title: ASAP: Adaptive structure aware pooling for learning hierarchical graph representations publication-title: Thirty-Fourth AAAI Conference on Artificial Intelligence – volume: 13 start-page: 1107 year: 2021 ident: b49 article-title: Android malware detection using TCN with bytecode image publication-title: Symmetry – year: 2024 ident: b21 article-title: A comprehensive study of learning-based android malware detectors under challenging environments publication-title: Proceedings of the IEEE/ACM 46th International Conference on Software Engineering – start-page: 9992 year: 2021 end-page: 10002 ident: b55 article-title: Swin transformer: Hierarchical vision transformer using shifted windows publication-title: 2021 IEEE/ CVF International Conference on Computer Vision – volume: 99 year: 2020 ident: b11 article-title: Recurrent neural network for detecting malware publication-title: Comput. Secur. – start-page: 279 year: 2021 end-page: 287 ident: b47 article-title: Android malware detection using function call graph with graph convolutional networks publication-title: 2021 2nd International Conference on Secure Cyber Computing and Communications – volume: 423 start-page: 301 year: 2021 end-page: 307 ident: b45 article-title: Learning features from enhanced function call graphs for android malware detection publication-title: Neurocomputing – start-page: 2633 year: 2018 end-page: 2642 ident: b34 article-title: R2-d2: Color-inspired convolutional neural network (CNN)-based android malware detections publication-title: 2018 IEEE International Conference on Big Data (Big Data) – volume: 8 start-page: 673 year: 2022 end-page: 685 ident: b30 article-title: PROUD-MAL: Static analysis-based progressive framework for deep unsupervised malware classification of windows portable executable publication-title: Complex Intell. Syst. – year: 2023 ident: b19 article-title: Obfuscation-resilient android malware analysis based on complementary features publication-title: IEEE Trans. Inf. Forensics Secur. – year: 2019 ident: b28 article-title: Android malware detection through generative adversarial networks publication-title: Trans. Emerg. Telecommun. Technol. – volume: 8 start-page: 194729 year: 2020 end-page: 194740 ident: b29 article-title: FAMD: A fast multifeature android malware detection framework, design, and implementation publication-title: IEEE Access – volume: 10 start-page: 4966 year: 2020 ident: b36 article-title: Hybrid malware classification method using segmentation-based fractal texture analysis and deep convolution neural network features publication-title: Appl. Sci.- Basel – start-page: 30 year: 2017 ident: b60 article-title: Inductive representation learning on large graphs publication-title: Advances in Neural Information Processing Systems – year: 2024 ident: 10.1016/j.neucom.2025.130053_b21 article-title: A comprehensive study of learning-based android malware detectors under challenging environments – volume: 109 issue: C year: 2021 ident: 10.1016/j.neucom.2025.130053_b9 article-title: Malware detection on windows audit logs using LSTMs publication-title: Comput. Secur. – start-page: 5987 year: 2017 ident: 10.1016/j.neucom.2025.130053_b54 article-title: Aggregated residual transformations for deep neural networks – year: 2023 ident: 10.1016/j.neucom.2025.130053_b19 article-title: Obfuscation-resilient android malware analysis based on complementary features publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2023.3302509 – start-page: 5470 year: 2020 ident: 10.1016/j.neucom.2025.130053_b62 article-title: ASAP: Adaptive structure aware pooling for learning hierarchical graph representations – year: 2011 ident: 10.1016/j.neucom.2025.130053_b1 – start-page: 2633 year: 2018 ident: 10.1016/j.neucom.2025.130053_b34 article-title: R2-d2: Color-inspired convolutional neural network (CNN)-based android malware detections – start-page: 473 year: 2018 ident: 10.1016/j.neucom.2025.130053_b24 article-title: DeepRefiner: Multi-layer android malware detection system applying deep neural networks – volume: 30 start-page: 67 year: 2022 ident: 10.1016/j.neucom.2025.130053_b8 article-title: BiLSTM malicious code classification based on multifeature fusion publication-title: Electron. Des. Eng. – start-page: 9992 year: 2021 ident: 10.1016/j.neucom.2025.130053_b55 article-title: Swin transformer: Hierarchical vision transformer using shifted windows – volume: 38 start-page: 35 issue: 1 year: 2004 ident: 10.1016/j.neucom.2025.130053_b51 article-title: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement publication-title: J. VLSI Signal Process. Syst. Signal, Image Video Technol. doi: 10.1023/B:VLSI.0000028532.53893.82 – year: 2018 ident: 10.1016/j.neucom.2025.130053_b57 – volume: 99 year: 2020 ident: 10.1016/j.neucom.2025.130053_b11 article-title: Recurrent neural network for detecting malware publication-title: Comput. Secur. doi: 10.1016/j.cose.2020.102037 – year: 2020 ident: 10.1016/j.neucom.2025.130053_b66 – volume: 2018 year: 2018 ident: 10.1016/j.neucom.2025.130053_b26 article-title: TinyDroid: A lightweight and efficient model for android malware detection and classification publication-title: Mob. Inf. Syst. – start-page: 16133 year: 2023 ident: 10.1016/j.neucom.2025.130053_b53 article-title: ConvNeXt V2: Co-designing and scaling ConvNets with masked autoencoders – start-page: 31 year: 2020 ident: 10.1016/j.neucom.2025.130053_b3 article-title: Static, dynamic and intrinsic features based android malware detection using machine learning – start-page: 770 year: 2016 ident: 10.1016/j.neucom.2025.130053_b56 article-title: Deep residual learning for image recognition – volume: 253 year: 2022 ident: 10.1016/j.neucom.2025.130053_b58 article-title: ConvUNeXt: An efficient convolution neural network for medical image segmentation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109512 – year: 2016 ident: 10.1016/j.neucom.2025.130053_b20 – volume: vol. 1482 year: 2021 ident: 10.1016/j.neucom.2025.130053_b38 article-title: DexRay: A simple, yet effective deep learning approach to android malware detection based on image representation of bytecode – year: 2021 ident: 10.1016/j.neucom.2025.130053_b61 – volume: 73 start-page: 73 year: 2018 ident: 10.1016/j.neucom.2025.130053_b12 article-title: A malware detection method based on family behavior graph publication-title: Comput. Secur. doi: 10.1016/j.cose.2017.10.007 – volume: 8 start-page: 673 issue: 1 year: 2022 ident: 10.1016/j.neucom.2025.130053_b30 article-title: PROUD-MAL: Static analysis-based progressive framework for deep unsupervised malware classification of windows portable executable publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00560-1 – volume: 299 year: 2024 ident: 10.1016/j.neucom.2025.130053_b40 article-title: Evolving malware detection through instant dynamic graph inverse reinforcement learning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2024.111991 – start-page: 30 year: 2017 ident: 10.1016/j.neucom.2025.130053_b60 article-title: Inductive representation learning on large graphs – start-page: 471 year: 2020 ident: 10.1016/j.neucom.2025.130053_b14 article-title: KNN applied to PDG for source code similarity classification – volume: 423 start-page: 301 year: 2021 ident: 10.1016/j.neucom.2025.130053_b45 article-title: Learning features from enhanced function call graphs for android malware detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.054 – start-page: 757 year: 2020 ident: 10.1016/j.neucom.2025.130053_b44 article-title: Enhancing state-of-the-art classifiers with API semantics to detect evolved android malware – volume: 8 start-page: 485 issue: 4 year: 2022 ident: 10.1016/j.neucom.2025.130053_b7 article-title: N-gram MalGAN: Evading machine learning detection via feature n-gram publication-title: Digit. Commun. Netw. doi: 10.1016/j.dcan.2021.11.007 – start-page: 139 year: 2019 ident: 10.1016/j.neucom.2025.130053_b42 article-title: MalScan: Fast market-wide mobile malware scanning by social-network centrality analysis – volume: 598 year: 2024 ident: 10.1016/j.neucom.2025.130053_b6 article-title: A review of deep learning-based malware detection techniques publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.128010 – year: 2015 ident: 10.1016/j.neucom.2025.130053_b65 article-title: Very deep convolutional networks for large-scale image recognition – volume: 95 start-page: 548 year: 2019 ident: 10.1016/j.neucom.2025.130053_b25 article-title: SaaS: A situational awareness and analysis system for massive android malware detection publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.12.028 – volume: 14 start-page: 3216 issue: 7 year: 2018 ident: 10.1016/j.neucom.2025.130053_b23 article-title: Significant permission identification for machine-learning-based android malware detection publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2789219 – volume: 80 start-page: 120 year: 2019 ident: 10.1016/j.neucom.2025.130053_b27 article-title: A scalable and extensible framework for android malware detection and family attribution publication-title: Comput. Secur. doi: 10.1016/j.cose.2018.10.001 – volume: 546 start-page: 420 year: 2021 ident: 10.1016/j.neucom.2025.130053_b31 article-title: AI-HydRa: Advanced hybrid approach using random forest and deep learning for malware classification publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.08.082 – volume: 92 year: 2020 ident: 10.1016/j.neucom.2025.130053_b35 article-title: Byte-level malware classification based on Markov images and deep learning publication-title: Comput. Secur. doi: 10.1016/j.cose.2020.101740 – year: 2014 ident: 10.1016/j.neucom.2025.130053_b22 article-title: Drebin: Effective and explainable detection of android malware in your pocket – volume: 10 start-page: 4966 issue: 14 year: 2020 ident: 10.1016/j.neucom.2025.130053_b36 article-title: Hybrid malware classification method using segmentation-based fractal texture analysis and deep convolution neural network features publication-title: Appl. Sci.- Basel doi: 10.3390/app10144966 – volume: 9 start-page: 39680 year: 2021 ident: 10.1016/j.neucom.2025.130053_b37 article-title: AdMat: A CNN-on-matrix approach to android malware detection and classification publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3063748 – start-page: 164 year: 2021 ident: 10.1016/j.neucom.2025.130053_b17 article-title: IMGDroid: A static analyzer for detecting image loading defects in android applications – volume: 50 issue: 3 year: 2017 ident: 10.1016/j.neucom.2025.130053_b2 article-title: A survey on malware detection using data mining techniques publication-title: ACM Comput. Surv. doi: 10.1145/3073559 – start-page: 3948 year: 2022 ident: 10.1016/j.neucom.2025.130053_b16 article-title: MalNet: A large-scale image database of malicious software – start-page: 6105 year: 2019 ident: 10.1016/j.neucom.2025.130053_b39 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks – volume: 53 issue: 6 year: 2021 ident: 10.1016/j.neucom.2025.130053_b5 article-title: A survey of android malware detection with deep neural models publication-title: ACM Comput. Surv. doi: 10.1145/3417978 – volume: 8 start-page: 194729 year: 2020 ident: 10.1016/j.neucom.2025.130053_b29 article-title: FAMD: A fast multifeature android malware detection framework, design, and implementation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3033026 – year: 2019 ident: 10.1016/j.neucom.2025.130053_b28 article-title: Android malware detection through generative adversarial networks publication-title: Trans. Emerg. Telecommun. Technol. – start-page: 11976 year: 2022 ident: 10.1016/j.neucom.2025.130053_b52 article-title: A ConvNet for the 2020s – start-page: 279 year: 2021 ident: 10.1016/j.neucom.2025.130053_b47 article-title: Android malware detection using function call graph with graph convolutional networks – volume: 77 start-page: 366 issue: C year: 2019 ident: 10.1016/j.neucom.2025.130053_b10 article-title: Long short-term memory-based malware classification method for information security publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2019.06.014 – volume: 563 year: 2024 ident: 10.1016/j.neucom.2025.130053_b50 article-title: Deep learning applications on cybersecurity: A practical approach publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126904 – volume: 30 start-page: 22 issue: 1 year: 2022 ident: 10.1016/j.neucom.2025.130053_b64 article-title: Effective and efficient hybrid android malware classification using pseudo-label stacked auto-encoder publication-title: J. Netw. Syst. Manage. doi: 10.1007/s10922-021-09634-4 – volume: 102 start-page: 112 year: 2020 ident: 10.1016/j.neucom.2025.130053_b4 article-title: Static malware detection and attribution in android byte-code through an end-to-end deep system publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.07.070 – volume: 115 year: 2020 ident: 10.1016/j.neucom.2025.130053_b18 article-title: EfficientNet convolutional neural networks-based android malware detection publication-title: Comput. Secur. – volume: 212 year: 2023 ident: 10.1016/j.neucom.2025.130053_b33 article-title: Android malware detection based on multi-head squeeze-and-excitation residual network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118705 – year: 2023 ident: 10.1016/j.neucom.2025.130053_b15 article-title: Black-box adversarial example attack towards FCG based android malware detection under incomplete feature information – volume: 109 year: 2021 ident: 10.1016/j.neucom.2025.130053_b46 article-title: Android malware detection via an app similarity graph publication-title: Comput. Secur. doi: 10.1016/j.cose.2021.102386 – volume: 11 start-page: 1252 issue: 6 year: 2016 ident: 10.1016/j.neucom.2025.130053_b48 article-title: ICCDetector: ICC-based malware detection on android publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2016.2523912 – volume: 13 start-page: 1107 issue: 7 year: 2021 ident: 10.1016/j.neucom.2025.130053_b49 article-title: Android malware detection using TCN with bytecode image publication-title: Symmetry doi: 10.3390/sym13071107 – start-page: 515 year: 2020 ident: 10.1016/j.neucom.2025.130053_b63 article-title: Dynamic android malware category classification using semi-supervised deep learning – volume: 123 year: 2022 ident: 10.1016/j.neucom.2025.130053_b32 article-title: An android malware detection and classification approach based on contrastive learning publication-title: Comput. Secur. doi: 10.1016/j.cose.2022.102915 – volume: 22 start-page: 14 issue: 2 year: 2019 ident: 10.1016/j.neucom.2025.130053_b41 article-title: MaMaDroid: Detecting android malware by building Markov chains of behavioral models (extended version) publication-title: ACM Trans. Priv. Secur. doi: 10.1145/3313391 – year: 2013 ident: 10.1016/j.neucom.2025.130053_b59 – volume: 30 start-page: 2229 issue: 8 year: 2019 ident: 10.1016/j.neucom.2025.130053_b13 article-title: Research on malware evolution and tracing technology publication-title: J. Softw. – volume: 10 issue: 186 year: 2021 ident: 10.1016/j.neucom.2025.130053_b43 article-title: Android malware detection based on structural features of the function call graph publication-title: Electronics |
| SSID | ssj0017129 |
| Score | 2.4527946 |
| Snippet | With the rapid development of Internet of Things (IoT) technology, Android devices have increasingly become primary targets for malware attacks. Although... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 130053 |
| SubjectTerms | Android Convolutional neural network Deep learning Graph convolutional network Malware detection |
| Title | SAC: Collaborative learning of structure and content features for Android malware detection framework |
| URI | https://dx.doi.org/10.1016/j.neucom.2025.130053 |
| Volume | 637 |
| WOSCitedRecordID | wos001458014800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017129 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELagcOACy0vAsisfuKGgNKljm1tVQF0OCPGQyilyHAeloinQFvj5O36lsEVoQeISVVbjRDOfxuPJ528Q2hO5lGERhoGKaRHACpUFTEU00ErlsWpKmlBpmk3QszPW6_FzV8oemXYCtKrYywu__1ZXwxg4Wx-d_YS760lhAH6D0-EKbofrfzn-st3R2_zO1MFPyjeHMARnKxnrPxxorroRaFJG4tPIMxia47DM9wfi7llTw3I1VraneOHJXK-zWqPwIU1_CFd5aA-0AEOu0VZXGm5cafq0nNKASjfWnZT9sl4hLmws7Aq3rGqGjyX1Hg2r2we_2rpiRUQMsZVOK2gzp2hsKRL-CHnmm6icWC2YmQhviw39g0pNNN1HP8R0tLaSw_9oZ1_qqfXMkOiFNCJsHi1ElHDWQAvtP8e90_qDE21GVpbRvYo_ZWmogLPPej-LeZWZXP1Ay25LgdsWCqtoTlVraMW368Aueq8jBcg4xG9wgT0u8LDANS4w4AI7XGCPCwy4wA4X2OEC17jANS420PXJ8VWnG7guG4GEcD0OSA5ZNmxaZcxEC_YPEpL4JCMZg51oRokUgiS0xcMoKwRPSFxIHpM8LihtKsYkiTdRoxpWagthlXPBIqFYyHgLtvJaO1FxCACsaLJcRNso8FZL762YSupZhv3UWjnVVk6tlbcR9aZNXUJoE70U0PDhnTtfvvMnWpoCdxc1wPTqF1qUT-Ny9PjbweYv3nCH0g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAC%3A+Collaborative+learning+of+structure+and+content+features+for+Android+malware+detection+framework&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yang%2C+Jin&rft.au=Liang%2C+Huijia&rft.au=Ren%2C+Hang&rft.au=Jia%2C+Dongqing&rft.date=2025-07-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.volume=637&rft_id=info:doi/10.1016%2Fj.neucom.2025.130053&rft.externalDocID=S0925231225007258 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |