Sensitivity Analysis for Two-Level Value Functions with Applications to Bilevel Programming

This paper contributes to a deeper understanding of the link between a now conventional framework in hierarchical optimization called the optimistic bilevel problem and its initial more difficult formulation that we call here the original optimistic bilevel optimization problem. It follows from this...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on optimization Ročník 22; číslo 4; s. 1309 - 1343
Hlavní autoři: Dempe, S., Mordukhovich, B. S., Zemkoho, A. B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2012
Témata:
ISSN:1052-6234, 1095-7189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper contributes to a deeper understanding of the link between a now conventional framework in hierarchical optimization called the optimistic bilevel problem and its initial more difficult formulation that we call here the original optimistic bilevel optimization problem. It follows from this research that although the process of deriving necessary optimality conditions for the latter problem is more involved, the conditions themselves do not---to a large extent---differ from those known for the conventional problem. It has already been well recognized in the literature that for optimality conditions of the usual optimistic bilevel program appropriate coderivative constructions for the set-valued solution map of the lower-level problem could be used, while it is shown in this paper that for the original optimistic formulation we have to go a step further to require and justify a certain Lipschitz-like property of this map. This is related to the local Lipschitz continuity of the optimal value function of an optimization problem constrained by solutions to another optimization problem; this function is labeled here as the two-level value function. More generally, we conduct a detailed sensitivity analysis for value functions of mathematical programs with extended complementarity constraints. The results obtained in this vein are applied to the two-level value function and then to the original optimistic formulation of the bilevel optimization problem, for which we derive verifiable stationarity conditions of various types entirely in terms of the initial data. [PUBLICATION ABSTRACT]
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1052-6234
1095-7189
DOI:10.1137/110845197