Enhanced acidolysis of phosphate rock and controlled phosphogypsum crystallization via high shear reactor
Phosphoric acid, vital for fertilizers and new energy materials, is produced via sulfuric acidolysis of phosphate rock (PR). Conventional dihydrate processes suffer from slow acidolysis rates, low phosphorus yield, high slurry recirculation and high residual phosphorus in phosphogypsum (PG). Herein,...
Uložené v:
| Vydané v: | Separation and purification technology Ročník 380; s. 135463 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
07.02.2026
|
| Predmet: | |
| ISSN: | 1383-5866 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Phosphoric acid, vital for fertilizers and new energy materials, is produced via sulfuric acidolysis of phosphate rock (PR). Conventional dihydrate processes suffer from slow acidolysis rates, low phosphorus yield, high slurry recirculation and high residual phosphorus in phosphogypsum (PG). Herein, Jet-flow high shear reactors (JF-HSRs) with novel configurations were designed to intensify the acidolysis process, enhancing PR leaching and modulating the crystallization of PG. Experiments and computational fluid dynamics (CFD) simulations demonstrated that JF-HSRs' intense turbulence and shear forces improve solid-liquid mass transfer, suppress PR encapsulation, and shift rate-limiting steps from diffusion to interfacial reactions. Optimized JF-HSR operation achieved >98 % P2O5 conversion across PR grades (28.5–32.8 % P2O5), surpassing traditional methods by ∼3 %, while reducing cocrystal P2O5 in PG to 0.23 % (vs. 0.61 % conventionally). An optimization model integrating the ‘flow fields-reaction-crystallization’ framework was developed, with a dimensionless correlation predicting P2O5 conversion, guiding dihydrate process optimization and advancing efficient phosphorus utilization.
[Display omitted]
•>98 % P2O5 conversion achieved with HSR than conventional methods.•Using HSR significantly reduces reaction time in wet dihydrate process.•Shear forces accelerated mass transfer and suppressed PR encapsulation.•Two-stage process (HSR mixing + ripening) refines crystal morphology. |
|---|---|
| ISSN: | 1383-5866 |
| DOI: | 10.1016/j.seppur.2025.135463 |