A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion

We present a computational framework for estimating the uncertainty in the numerical solution of linearized infinite-dimensional statistical inverse problems. We adopt the Bayesian inference formulation: given observational data and their uncertainty, the governing forward problem and its uncertaint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing Jg. 35; H. 6; S. A2494 - A2523
Hauptverfasser: Bui-Thanh, Tan, Ghattas, Omar, Martin, James, Stadler, Georg
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Society for Industrial and Applied Mathematics 01.01.2013
Schlagworte:
ISSN:1064-8275, 1095-7197
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a computational framework for estimating the uncertainty in the numerical solution of linearized infinite-dimensional statistical inverse problems. We adopt the Bayesian inference formulation: given observational data and their uncertainty, the governing forward problem and its uncertainty, and a prior probability distribution describing uncertainty in the parameter field, find the posterior probability distribution over the parameter field. The prior must be chosen appropriately in order to guarantee well-posedness of the infinite-dimensional inverse problem and facilitate computation of the posterior. Furthermore, straightforward discretizations may not lead to convergent approximations of the infinite-dimensional problem. And finally, solution of the discretized inverse problem via explicit construction of the covariance matrix is prohibitive due to the need to solve the forward problem as many times as there are parameters. Our computational framework builds on the infinite-dimensional formulation proposed by Stuart [Acta Numer., 19 (2010), pp. 451--559] and incorporates a number of components aimed at ensuring a convergent discretization of the underlying infinite-dimensional inverse problem. The framework additionally incorporates algorithms for manipulating the prior, constructing a low rank approximation of the data-informed component of the posterior covariance operator, and exploring the posterior that together ensure scalability of the entire framework to very high parameter dimensions. We demonstrate this computational framework on the Bayesian solution of an inverse problem in three-dimensional global seismic wave propagation with hundreds of thousands of parameters. [PUBLICATION ABSTRACT]
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1064-8275
1095-7197
DOI:10.1137/12089586X