Temporal latent variable structural causal model for causal discovery under external interferences
Inferring causal relationships from observed data is an important task, yet it becomes challenging when the data is subject to various external interferences. Most of these interferences are the additional effects of external factors on observed variables. Since these external factors are often unkn...
Saved in:
| Published in: | Neurocomputing (Amsterdam) Vol. 640; p. 130281 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.08.2025
|
| Subjects: | |
| ISSN: | 0925-2312 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Inferring causal relationships from observed data is an important task, yet it becomes challenging when the data is subject to various external interferences. Most of these interferences are the additional effects of external factors on observed variables. Since these external factors are often unknown, we introduce latent variables to represent these unobserved factors that affect the observed data. Specifically, to capture the causal strength and adjacency information, we propose a new temporal latent variable structural causal model, incorporating causal strength and adjacency coefficients that represent the causal relationships between variables. Considering that expert knowledge can provide information about unknown interferences in certain scenarios, we develop a method that facilitates the incorporation of prior knowledge into parameters learning based on Variational Inference, to guide the model estimation. Experimental results demonstrate the stability and accuracy of our proposed method.
•We propose a Temporal Latent Variable Structural Causal Model for causal discovery with external interferences.•We use a Hadamard product of adjacency and weight matrices to constrain model complexity.•We estimate the model using variational inference, integrating expert knowledge as a prior. |
|---|---|
| AbstractList | Inferring causal relationships from observed data is an important task, yet it becomes challenging when the data is subject to various external interferences. Most of these interferences are the additional effects of external factors on observed variables. Since these external factors are often unknown, we introduce latent variables to represent these unobserved factors that affect the observed data. Specifically, to capture the causal strength and adjacency information, we propose a new temporal latent variable structural causal model, incorporating causal strength and adjacency coefficients that represent the causal relationships between variables. Considering that expert knowledge can provide information about unknown interferences in certain scenarios, we develop a method that facilitates the incorporation of prior knowledge into parameters learning based on Variational Inference, to guide the model estimation. Experimental results demonstrate the stability and accuracy of our proposed method.
•We propose a Temporal Latent Variable Structural Causal Model for causal discovery with external interferences.•We use a Hadamard product of adjacency and weight matrices to constrain model complexity.•We estimate the model using variational inference, integrating expert knowledge as a prior. |
| ArticleNumber | 130281 |
| Author | Chen, Wei Cai, Ruichu Huang, Xiaokai Li, Zijian Hao, Zhifeng |
| Author_xml | – sequence: 1 givenname: Ruichu surname: Cai fullname: Cai, Ruichu organization: School of Computer Science, Guangdong University of Technology, Guangzhou, China – sequence: 2 givenname: Xiaokai surname: Huang fullname: Huang, Xiaokai organization: School of Computer Science, Guangdong University of Technology, Guangzhou, China – sequence: 3 givenname: Wei orcidid: 0000-0002-8213-0567 surname: Chen fullname: Chen, Wei email: chenweidelight@gmail.com organization: School of Computer Science, Guangdong University of Technology, Guangzhou, China – sequence: 4 givenname: Zijian surname: Li fullname: Li, Zijian organization: School of Computer Science, Guangdong University of Technology, Guangzhou, China – sequence: 5 givenname: Zhifeng surname: Hao fullname: Hao, Zhifeng organization: School of Computer Science, Guangdong University of Technology, Guangzhou, China |
| BookMark | eNp9kM1qwzAQhHVIoUnaN-jBL2BXWv9Jl0IJ_YNAL-lZ2NIaFGwpSLJp3r42bq89zbLDDMO3IxvrLBLywGjGKKsez5nFUbkhAwplxnIKnG3IlgooU8gZ3JJdCGdKWc1AbEl7wuHifNMnfRPRxmRqvGnaHpMQ_ajiuFiqGcMsg9PYJ53zfw9tgnIT-msyWo0-we-I3s6GsfPRoUerMNyRm67pA97_6p58vb6cDu_p8fPt4_B8TBWUdUyhEAVWWkCrkAmha10J4B3TOc2rTgvN21YrUeSMIgdeI63KqkQAXiAXpcr3pFh7lXcheOzkxZuh8VfJqFzYyLNc2ciFjVzZzLGnNYbztsmgl0GZZbg2HlWU2pn_C34AHbB1Kw |
| Cites_doi | 10.1007/s11432-021-3724-0 10.1109/TNNLS.2020.3045812 10.1016/j.eswa.2022.118036 10.1016/j.neucom.2021.10.030 10.1016/j.neuroimage.2010.08.063 10.1146/annurev-statistics-040120-010930 10.1080/01621459.2017.1285773 10.1126/sciadv.aau4996 10.3390/make1010019 10.1016/j.jneumeth.2008.04.011 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2025.130281 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_neucom_2025_130281 S0925231225009531 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYFN AAYWO ABBOA ABCQJ ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c257t-2494e6d92bce199d7d6928f1d3036fd9d8bbdc94310e8287e06565e2284e895c3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001510371400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 06:52:31 EST 2025 Sat Jun 21 16:53:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Latent variables Temporal data Variational inference External interference Causal discovery |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c257t-2494e6d92bce199d7d6928f1d3036fd9d8bbdc94310e8287e06565e2284e895c3 |
| ORCID | 0000-0002-8213-0567 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2025_130281 elsevier_sciencedirect_doi_10_1016_j_neucom_2025_130281 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 2025-08-00 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kleinberg (b39) 2013 Huang, Zhang, Schölkopf (b24) 2015 Nauta, Bucur, Seifert (b29) 2019; 1 Shojaie, Fox (b30) 2022; 9 Chen, Chen, Cai, Liu, Hao (b8) 2022; 468 Geiger, Zhang, Schoelkopf, Gong, Janzing (b15) 2015 Kalisch, Bühlman (b19) 2007; 8 Spirtes, Glymour, Scheines (b18) 2000 Li, Pearl (b5) 2023 Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols, Ramsey, Woolrich (b38) 2011; 54 Zheng, Aragam, Ravikumar, Xing (b36) 2018; 31 Runge (b12) 2020 Gerhardus, Runge (b14) 2020; 33 Cai, Huang, Chen, Qiao, Hao (b9) 2023; 53 Chu, Glymour, Ridgeway (b25) 2008; 9 Runge, Nowack, Kretschmer, Flaxman, Sejdinovic (b11) 2019; 5 Chen, Cai, Zhang, Hao (b7) 2021; 33 Hyvärinen, Zhang, Shimizu, Hoyer (b13) 2010; 11 Ogburn, Sofrygin, Diaz, Van der Laan (b3) 2022 Kap (b37) 2021 C. Maddison, A. Mnih, Y. Teh, The concrete distribution: A continuous relaxation of discrete random variables, in: Proceedings of the International Conference on Learning Representations, 2017. Wang, Drton (b10) 2023; 24 Canova (b16) 1999 D.P. Kingma, M. Welling, Auto-Encoding Variational Bayes, in: Proceedings of the International Conference on Learning Representations, 2014. Malinsky, Spirtes (b26) 2018 Castri, Mghames, Hanheide, Bellotto (b20) 2023 Chickering (b21) 2002; 3 Granger (b31) 1969 Yin, Barucca (b28) 2022; 207 Pamfil, Sriwattanaworachai, Desai, Pilgerstorfer, Georgatzis, Beaumont, Aragam (b22) 2020 Blei, Kucukelbir, McAuliffe (b17) 2017; 112 Calcaterra, Boldt (b32) 2008 E. Jang, S. Gu, B. Poole, Categorical Reparametrization with Gumble-Softmax, in: Proceedings of the International Conference on Learning Representations, 2017. Pearl (b2) 2009 Lagemann, Lagemann, Taschler, Mukherjee (b4) 2023 Entner, Hoyer (b23) 2010 Cai, Wu, Huang, Chen, Fu, Hao (b6) 2024; 67 Guo, Seth, Kendrick, Zhou, Feng (b27) 2008; 172 Pearl (b1) 2000; vol. 19 Zheng (10.1016/j.neucom.2025.130281_b36) 2018; 31 Kleinberg (10.1016/j.neucom.2025.130281_b39) 2013 Chickering (10.1016/j.neucom.2025.130281_b21) 2002; 3 Granger (10.1016/j.neucom.2025.130281_b31) 1969 Li (10.1016/j.neucom.2025.130281_b5) 2023 Calcaterra (10.1016/j.neucom.2025.130281_b32) 2008 Blei (10.1016/j.neucom.2025.130281_b17) 2017; 112 Chen (10.1016/j.neucom.2025.130281_b7) 2021; 33 Spirtes (10.1016/j.neucom.2025.130281_b18) 2000 Canova (10.1016/j.neucom.2025.130281_b16) 1999 Lagemann (10.1016/j.neucom.2025.130281_b4) 2023 Castri (10.1016/j.neucom.2025.130281_b20) 2023 10.1016/j.neucom.2025.130281_b33 10.1016/j.neucom.2025.130281_b34 10.1016/j.neucom.2025.130281_b35 Runge (10.1016/j.neucom.2025.130281_b12) 2020 Yin (10.1016/j.neucom.2025.130281_b28) 2022; 207 Kap (10.1016/j.neucom.2025.130281_b37) 2021 Chen (10.1016/j.neucom.2025.130281_b8) 2022; 468 Huang (10.1016/j.neucom.2025.130281_b24) 2015 Shojaie (10.1016/j.neucom.2025.130281_b30) 2022; 9 Wang (10.1016/j.neucom.2025.130281_b10) 2023; 24 Smith (10.1016/j.neucom.2025.130281_b38) 2011; 54 Nauta (10.1016/j.neucom.2025.130281_b29) 2019; 1 Hyvärinen (10.1016/j.neucom.2025.130281_b13) 2010; 11 Pamfil (10.1016/j.neucom.2025.130281_b22) 2020 Geiger (10.1016/j.neucom.2025.130281_b15) 2015 Pearl (10.1016/j.neucom.2025.130281_b2) 2009 Cai (10.1016/j.neucom.2025.130281_b6) 2024; 67 Cai (10.1016/j.neucom.2025.130281_b9) 2023; 53 Gerhardus (10.1016/j.neucom.2025.130281_b14) 2020; 33 Chu (10.1016/j.neucom.2025.130281_b25) 2008; 9 Entner (10.1016/j.neucom.2025.130281_b23) 2010 Pearl (10.1016/j.neucom.2025.130281_b1) 2000; vol. 19 Runge (10.1016/j.neucom.2025.130281_b11) 2019; 5 Malinsky (10.1016/j.neucom.2025.130281_b26) 2018 Ogburn (10.1016/j.neucom.2025.130281_b3) 2022 Guo (10.1016/j.neucom.2025.130281_b27) 2008; 172 Kalisch (10.1016/j.neucom.2025.130281_b19) 2007; 8 |
| References_xml | – reference: C. Maddison, A. Mnih, Y. Teh, The concrete distribution: A continuous relaxation of discrete random variables, in: Proceedings of the International Conference on Learning Representations, 2017. – volume: 468 start-page: 22 year: 2022 end-page: 32 ident: b8 article-title: Learning Granger causality for non-stationary Hawkes processes publication-title: Neurocomputing – volume: 207 year: 2022 ident: b28 article-title: Deep recurrent modelling of Granger causality with latent confounding publication-title: Expert Syst. Appl. – start-page: 1 year: 2022 end-page: 15 ident: b3 article-title: Causal inference for social network data publication-title: J. Amer. Statist. Assoc. – start-page: 23 year: 2018 end-page: 47 ident: b26 article-title: Causal structure learning from multivariate time series in settings with unmeasured confounding publication-title: Proceedings of 2018 ACM SIGKDD Workshop on Causal Discovery – year: 2009 ident: b2 article-title: Causality – start-page: 1917 year: 2015 end-page: 1925 ident: b15 article-title: Causal inference by identification of vector autoregressive processes with hidden components publication-title: International Conference on Machine Learning – volume: 5 start-page: eaau4996 year: 2019 ident: b11 article-title: Detecting and quantifying causal associations in large nonlinear time series datasets publication-title: Sci. Adv. – start-page: 243 year: 2023 end-page: 258 ident: b20 article-title: Enhancing causal discovery from robot sensor data in dynamic scenarios publication-title: Conference on Causal Learning and Reasoning – start-page: 3561 year: 2015 end-page: 3568 ident: b24 article-title: Identification of time-dependent causal model: A Gaussian process treatment publication-title: 24th International Joint Conference on Artificial Intelligence – volume: 33 start-page: 2816 year: 2021 end-page: 2827 ident: b7 article-title: Causal discovery in linear non-gaussian acyclic model with multiple latent confounders publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 9 year: 2008 ident: b25 article-title: Search for additive nonlinear time series causal models publication-title: J. Mach. Learn. Res. – year: 2008 ident: b32 article-title: Approximating with gaussians – year: 2013 ident: b39 article-title: Causality, Probability, and Time – volume: 33 start-page: 12615 year: 2020 end-page: 12625 ident: b14 article-title: High-recall causal discovery for autocorrelated time series with latent confounders publication-title: Adv. Neural Inf. Process. Syst. – volume: 172 start-page: 79 year: 2008 end-page: 93 ident: b27 article-title: Partial Granger causality—eliminating exogenous inputs and latent variables publication-title: J. Neurosci. Methods – volume: 1 start-page: 312 year: 2019 end-page: 340 ident: b29 article-title: Causal discovery with attention-based convolutional neural networks publication-title: Mach. Learn. Knowl. Extr. – volume: 67 year: 2024 ident: b6 article-title: Granger causal representation learning for groups of time series publication-title: Sci. China Inf. Sci. – start-page: 121 year: 2010 end-page: 128 ident: b23 article-title: On causal discovery from time series data using FCI publication-title: Probab. Graph. Model. – volume: 8 year: 2007 ident: b19 article-title: Estimating high-dimensional directed acyclic graphs with the PC-algorithm publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 289 year: 2022 end-page: 319 ident: b30 article-title: Granger causality: A review and recent advances publication-title: Annu. Rev. Stat. Appl. – volume: 112 start-page: 859 year: 2017 end-page: 877 ident: b17 article-title: Variational inference: A review for statisticians publication-title: J. Amer. Statist. Assoc. – year: 2021 ident: b37 article-title: The effect of noise level on causal identification with additive noise models – start-page: 10012 year: 2023 end-page: 10027 ident: b5 article-title: Probabilities of causation: Role of observational data publication-title: International Conference on Artificial Intelligence and Statistics – year: 2000 ident: b18 article-title: Causation, Prediction, and Search – volume: 31 year: 2018 ident: b36 article-title: Dags with no tears: Continuous optimization for structure learning publication-title: Adv. Neural Inf. Process. Syst. – start-page: 53 year: 1999 end-page: 110 ident: b16 article-title: Vector autoregressive models: specification, estimation, inference, and forecasting publication-title: Handbook of Applied Econometrics Volume 1: Macroeconomics – volume: 11 year: 2010 ident: b13 article-title: Estimation of a structural vector autoregression model using non-gaussianity publication-title: J. Mach. Learn. Res. – start-page: 1595 year: 2020 end-page: 1605 ident: b22 article-title: Dynotears: Structure learning from time-series data publication-title: International Conference on Artificial Intelligence and Statistics – start-page: 424 year: 1969 end-page: 438 ident: b31 article-title: Investigating causal relations by econometric models and cross-spectral methods publication-title: Econ.: J. Econ. Soc. – volume: 53 start-page: 5437 year: 2023 end-page: 5448 ident: b9 article-title: Learning dynamic causal mechanisms from non-stationary data publication-title: Appl. Intell. – start-page: 1388 year: 2020 end-page: 1397 ident: b12 article-title: Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets publication-title: Conference on Uncertainty in Artificial Intelligence – volume: 24 start-page: 1 year: 2023 end-page: 61 ident: b10 article-title: Causal discovery with unobserved confounding and non-Gaussian data publication-title: J. Mach. Learn. Res. – volume: 54 start-page: 875 year: 2011 end-page: 891 ident: b38 article-title: Network modelling methods for FMRI publication-title: Neuroimage – reference: D.P. Kingma, M. Welling, Auto-Encoding Variational Bayes, in: Proceedings of the International Conference on Learning Representations, 2014. – volume: vol. 19 year: 2000 ident: b1 publication-title: Models, Reasoning and Inference – start-page: 1 year: 2023 end-page: 11 ident: b4 article-title: Deep learning of causal structures in high dimensions under data limitations publication-title: Nat. Mach. Intell. – reference: E. Jang, S. Gu, B. Poole, Categorical Reparametrization with Gumble-Softmax, in: Proceedings of the International Conference on Learning Representations, 2017. – volume: 3 start-page: 507 year: 2002 end-page: 554 ident: b21 article-title: Optimal structure identification with greedy search publication-title: J. Mach. Learn. Res. – start-page: 1388 year: 2020 ident: 10.1016/j.neucom.2025.130281_b12 article-title: Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets – year: 2000 ident: 10.1016/j.neucom.2025.130281_b18 – ident: 10.1016/j.neucom.2025.130281_b34 – volume: 67 issue: 5 year: 2024 ident: 10.1016/j.neucom.2025.130281_b6 article-title: Granger causal representation learning for groups of time series publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-021-3724-0 – volume: 33 start-page: 2816 issue: 7 year: 2021 ident: 10.1016/j.neucom.2025.130281_b7 article-title: Causal discovery in linear non-gaussian acyclic model with multiple latent confounders publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3045812 – volume: 3 start-page: 507 issue: Nov year: 2002 ident: 10.1016/j.neucom.2025.130281_b21 article-title: Optimal structure identification with greedy search publication-title: J. Mach. Learn. Res. – start-page: 243 year: 2023 ident: 10.1016/j.neucom.2025.130281_b20 article-title: Enhancing causal discovery from robot sensor data in dynamic scenarios – volume: vol. 19 year: 2000 ident: 10.1016/j.neucom.2025.130281_b1 – start-page: 1 year: 2022 ident: 10.1016/j.neucom.2025.130281_b3 article-title: Causal inference for social network data publication-title: J. Amer. Statist. Assoc. – start-page: 1917 year: 2015 ident: 10.1016/j.neucom.2025.130281_b15 article-title: Causal inference by identification of vector autoregressive processes with hidden components – start-page: 10012 year: 2023 ident: 10.1016/j.neucom.2025.130281_b5 article-title: Probabilities of causation: Role of observational data – volume: 8 issue: 3 year: 2007 ident: 10.1016/j.neucom.2025.130281_b19 article-title: Estimating high-dimensional directed acyclic graphs with the PC-algorithm publication-title: J. Mach. Learn. Res. – volume: 207 year: 2022 ident: 10.1016/j.neucom.2025.130281_b28 article-title: Deep recurrent modelling of Granger causality with latent confounding publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118036 – year: 2008 ident: 10.1016/j.neucom.2025.130281_b32 – volume: 468 start-page: 22 year: 2022 ident: 10.1016/j.neucom.2025.130281_b8 article-title: Learning Granger causality for non-stationary Hawkes processes publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.030 – volume: 54 start-page: 875 issue: 2 year: 2011 ident: 10.1016/j.neucom.2025.130281_b38 article-title: Network modelling methods for FMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.063 – ident: 10.1016/j.neucom.2025.130281_b33 – volume: 53 start-page: 5437 issue: 5 year: 2023 ident: 10.1016/j.neucom.2025.130281_b9 article-title: Learning dynamic causal mechanisms from non-stationary data publication-title: Appl. Intell. – year: 2009 ident: 10.1016/j.neucom.2025.130281_b2 – ident: 10.1016/j.neucom.2025.130281_b35 – year: 2021 ident: 10.1016/j.neucom.2025.130281_b37 – volume: 9 start-page: 289 issue: 1 year: 2022 ident: 10.1016/j.neucom.2025.130281_b30 article-title: Granger causality: A review and recent advances publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-040120-010930 – start-page: 1595 year: 2020 ident: 10.1016/j.neucom.2025.130281_b22 article-title: Dynotears: Structure learning from time-series data – start-page: 53 year: 1999 ident: 10.1016/j.neucom.2025.130281_b16 article-title: Vector autoregressive models: specification, estimation, inference, and forecasting – volume: 112 start-page: 859 issue: 518 year: 2017 ident: 10.1016/j.neucom.2025.130281_b17 article-title: Variational inference: A review for statisticians publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.2017.1285773 – start-page: 424 year: 1969 ident: 10.1016/j.neucom.2025.130281_b31 article-title: Investigating causal relations by econometric models and cross-spectral methods publication-title: Econ.: J. Econ. Soc. – volume: 5 start-page: eaau4996 issue: 11 year: 2019 ident: 10.1016/j.neucom.2025.130281_b11 article-title: Detecting and quantifying causal associations in large nonlinear time series datasets publication-title: Sci. Adv. doi: 10.1126/sciadv.aau4996 – volume: 24 start-page: 1 issue: 271 year: 2023 ident: 10.1016/j.neucom.2025.130281_b10 article-title: Causal discovery with unobserved confounding and non-Gaussian data publication-title: J. Mach. Learn. Res. – start-page: 3561 year: 2015 ident: 10.1016/j.neucom.2025.130281_b24 article-title: Identification of time-dependent causal model: A Gaussian process treatment – start-page: 23 year: 2018 ident: 10.1016/j.neucom.2025.130281_b26 article-title: Causal structure learning from multivariate time series in settings with unmeasured confounding – volume: 1 start-page: 312 issue: 1 year: 2019 ident: 10.1016/j.neucom.2025.130281_b29 article-title: Causal discovery with attention-based convolutional neural networks publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make1010019 – start-page: 1 year: 2023 ident: 10.1016/j.neucom.2025.130281_b4 article-title: Deep learning of causal structures in high dimensions under data limitations publication-title: Nat. Mach. Intell. – volume: 172 start-page: 79 issue: 1 year: 2008 ident: 10.1016/j.neucom.2025.130281_b27 article-title: Partial Granger causality—eliminating exogenous inputs and latent variables publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2008.04.011 – volume: 11 issue: 5 year: 2010 ident: 10.1016/j.neucom.2025.130281_b13 article-title: Estimation of a structural vector autoregression model using non-gaussianity publication-title: J. Mach. Learn. Res. – volume: 33 start-page: 12615 year: 2020 ident: 10.1016/j.neucom.2025.130281_b14 article-title: High-recall causal discovery for autocorrelated time series with latent confounders publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 issue: 5 year: 2008 ident: 10.1016/j.neucom.2025.130281_b25 article-title: Search for additive nonlinear time series causal models publication-title: J. Mach. Learn. Res. – year: 2013 ident: 10.1016/j.neucom.2025.130281_b39 – start-page: 121 year: 2010 ident: 10.1016/j.neucom.2025.130281_b23 article-title: On causal discovery from time series data using FCI publication-title: Probab. Graph. Model. – volume: 31 year: 2018 ident: 10.1016/j.neucom.2025.130281_b36 article-title: Dags with no tears: Continuous optimization for structure learning publication-title: Adv. Neural Inf. Process. Syst. |
| SSID | ssj0017129 |
| Score | 2.4489934 |
| Snippet | Inferring causal relationships from observed data is an important task, yet it becomes challenging when the data is subject to various external interferences.... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 130281 |
| SubjectTerms | Causal discovery External interference Latent variables Temporal data Variational inference |
| Title | Temporal latent variable structural causal model for causal discovery under external interferences |
| URI | https://dx.doi.org/10.1016/j.neucom.2025.130281 |
| Volume | 640 |
| WOSCitedRecordID | wos001510371400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017129 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF6lgUMvhQIVlFLtobfIKHH82D1GKKgghCpERcTF8j6iOgSD8hLc-OnM7MMmUCE4cLHiUby2dj6Nv13PfEPIL8lYBLSgg2kV3SDKeTsQacIDNowFQ8Khc6Mze5KenrLBgP9pNB58LcxinJYlu7vjtx_qarCBs7F09h3urgYFA_wGp8MR3A7Htzneik2NW2OgkeWstYDVsKmPslKxRmZD5vMplo1gGxyTaOgMWKOLOZ33pj3upOU1oo2qxMSVBk6fEloj7iFNawi36dC7Ru0FhUCrNhkObNPrs3kh_81rJLm96kGR31zlRZ1pYEPhha5MJ-byy2Lkwez2KcK4ypKrNhzBBmxyKfYmVqvJRU_8iGobuLwI7HaPYbRf6jlm-eAN9uu_L-toP3u_VVmHPqFtlNlRMhwls6N8IithGnOIiyu9o_7guPoSlXZCq9font6XX5ocwZdP839684SynK-TL26tQXsWI19JQ5cbZM338aAurG8S4SFDLWSohwytIUMtQqiBDAXIeEMFGWogQ_1k0CXIbJG_h_3zg9-B670RSAjiswBW5ZFOFA-F1B3OVaoSHrJhRyHlGSqumBBKcqCfbY09EzRQ2STWIbAdzXgsu99Is7wp9TaheKa6kewyIaM2Z0zGYSTCXEiOq2m1QwI_ZdmtlVjJXnPVDkn9vGaOJlr6lwFYXr3y-zvvtEs-10j-QZow53qPrMrFrJhOfjqkPAIPkI1C |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+latent+variable+structural+causal+model+for+causal+discovery+under+external+interferences&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Cai%2C+Ruichu&rft.au=Huang%2C+Xiaokai&rft.au=Chen%2C+Wei&rft.au=Li%2C+Zijian&rft.date=2025-08-01&rft.issn=0925-2312&rft.volume=640&rft.spage=130281&rft_id=info:doi/10.1016%2Fj.neucom.2025.130281&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2025_130281 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |