Temporal latent variable structural causal model for causal discovery under external interferences

Inferring causal relationships from observed data is an important task, yet it becomes challenging when the data is subject to various external interferences. Most of these interferences are the additional effects of external factors on observed variables. Since these external factors are often unkn...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 640; p. 130281
Main Authors: Cai, Ruichu, Huang, Xiaokai, Chen, Wei, Li, Zijian, Hao, Zhifeng
Format: Journal Article
Language:English
Published: Elsevier B.V 01.08.2025
Subjects:
ISSN:0925-2312
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Inferring causal relationships from observed data is an important task, yet it becomes challenging when the data is subject to various external interferences. Most of these interferences are the additional effects of external factors on observed variables. Since these external factors are often unknown, we introduce latent variables to represent these unobserved factors that affect the observed data. Specifically, to capture the causal strength and adjacency information, we propose a new temporal latent variable structural causal model, incorporating causal strength and adjacency coefficients that represent the causal relationships between variables. Considering that expert knowledge can provide information about unknown interferences in certain scenarios, we develop a method that facilitates the incorporation of prior knowledge into parameters learning based on Variational Inference, to guide the model estimation. Experimental results demonstrate the stability and accuracy of our proposed method. •We propose a Temporal Latent Variable Structural Causal Model for causal discovery with external interferences.•We use a Hadamard product of adjacency and weight matrices to constrain model complexity.•We estimate the model using variational inference, integrating expert knowledge as a prior.
AbstractList Inferring causal relationships from observed data is an important task, yet it becomes challenging when the data is subject to various external interferences. Most of these interferences are the additional effects of external factors on observed variables. Since these external factors are often unknown, we introduce latent variables to represent these unobserved factors that affect the observed data. Specifically, to capture the causal strength and adjacency information, we propose a new temporal latent variable structural causal model, incorporating causal strength and adjacency coefficients that represent the causal relationships between variables. Considering that expert knowledge can provide information about unknown interferences in certain scenarios, we develop a method that facilitates the incorporation of prior knowledge into parameters learning based on Variational Inference, to guide the model estimation. Experimental results demonstrate the stability and accuracy of our proposed method. •We propose a Temporal Latent Variable Structural Causal Model for causal discovery with external interferences.•We use a Hadamard product of adjacency and weight matrices to constrain model complexity.•We estimate the model using variational inference, integrating expert knowledge as a prior.
ArticleNumber 130281
Author Chen, Wei
Cai, Ruichu
Huang, Xiaokai
Li, Zijian
Hao, Zhifeng
Author_xml – sequence: 1
  givenname: Ruichu
  surname: Cai
  fullname: Cai, Ruichu
  organization: School of Computer Science, Guangdong University of Technology, Guangzhou, China
– sequence: 2
  givenname: Xiaokai
  surname: Huang
  fullname: Huang, Xiaokai
  organization: School of Computer Science, Guangdong University of Technology, Guangzhou, China
– sequence: 3
  givenname: Wei
  orcidid: 0000-0002-8213-0567
  surname: Chen
  fullname: Chen, Wei
  email: chenweidelight@gmail.com
  organization: School of Computer Science, Guangdong University of Technology, Guangzhou, China
– sequence: 4
  givenname: Zijian
  surname: Li
  fullname: Li, Zijian
  organization: School of Computer Science, Guangdong University of Technology, Guangzhou, China
– sequence: 5
  givenname: Zhifeng
  surname: Hao
  fullname: Hao, Zhifeng
  organization: School of Computer Science, Guangdong University of Technology, Guangzhou, China
BookMark eNp9kM1qwzAQhHVIoUnaN-jBL2BXWv9Jl0IJ_YNAL-lZ2NIaFGwpSLJp3r42bq89zbLDDMO3IxvrLBLywGjGKKsez5nFUbkhAwplxnIKnG3IlgooU8gZ3JJdCGdKWc1AbEl7wuHifNMnfRPRxmRqvGnaHpMQ_ajiuFiqGcMsg9PYJ53zfw9tgnIT-msyWo0-we-I3s6GsfPRoUerMNyRm67pA97_6p58vb6cDu_p8fPt4_B8TBWUdUyhEAVWWkCrkAmha10J4B3TOc2rTgvN21YrUeSMIgdeI63KqkQAXiAXpcr3pFh7lXcheOzkxZuh8VfJqFzYyLNc2ciFjVzZzLGnNYbztsmgl0GZZbg2HlWU2pn_C34AHbB1Kw
Cites_doi 10.1007/s11432-021-3724-0
10.1109/TNNLS.2020.3045812
10.1016/j.eswa.2022.118036
10.1016/j.neucom.2021.10.030
10.1016/j.neuroimage.2010.08.063
10.1146/annurev-statistics-040120-010930
10.1080/01621459.2017.1285773
10.1126/sciadv.aau4996
10.3390/make1010019
10.1016/j.jneumeth.2008.04.011
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2025.130281
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_neucom_2025_130281
S0925231225009531
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
AAYWO
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
WUQ
XPP
~HD
ID FETCH-LOGICAL-c257t-2494e6d92bce199d7d6928f1d3036fd9d8bbdc94310e8287e06565e2284e895c3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001510371400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 06:52:31 EST 2025
Sat Jun 21 16:53:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Latent variables
Temporal data
Variational inference
External interference
Causal discovery
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-2494e6d92bce199d7d6928f1d3036fd9d8bbdc94310e8287e06565e2284e895c3
ORCID 0000-0002-8213-0567
ParticipantIDs crossref_primary_10_1016_j_neucom_2025_130281
elsevier_sciencedirect_doi_10_1016_j_neucom_2025_130281
PublicationCentury 2000
PublicationDate 2025-08-01
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kleinberg (b39) 2013
Huang, Zhang, Schölkopf (b24) 2015
Nauta, Bucur, Seifert (b29) 2019; 1
Shojaie, Fox (b30) 2022; 9
Chen, Chen, Cai, Liu, Hao (b8) 2022; 468
Geiger, Zhang, Schoelkopf, Gong, Janzing (b15) 2015
Kalisch, Bühlman (b19) 2007; 8
Spirtes, Glymour, Scheines (b18) 2000
Li, Pearl (b5) 2023
Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols, Ramsey, Woolrich (b38) 2011; 54
Zheng, Aragam, Ravikumar, Xing (b36) 2018; 31
Runge (b12) 2020
Gerhardus, Runge (b14) 2020; 33
Cai, Huang, Chen, Qiao, Hao (b9) 2023; 53
Chu, Glymour, Ridgeway (b25) 2008; 9
Runge, Nowack, Kretschmer, Flaxman, Sejdinovic (b11) 2019; 5
Chen, Cai, Zhang, Hao (b7) 2021; 33
Hyvärinen, Zhang, Shimizu, Hoyer (b13) 2010; 11
Ogburn, Sofrygin, Diaz, Van der Laan (b3) 2022
Kap (b37) 2021
C. Maddison, A. Mnih, Y. Teh, The concrete distribution: A continuous relaxation of discrete random variables, in: Proceedings of the International Conference on Learning Representations, 2017.
Wang, Drton (b10) 2023; 24
Canova (b16) 1999
D.P. Kingma, M. Welling, Auto-Encoding Variational Bayes, in: Proceedings of the International Conference on Learning Representations, 2014.
Malinsky, Spirtes (b26) 2018
Castri, Mghames, Hanheide, Bellotto (b20) 2023
Chickering (b21) 2002; 3
Granger (b31) 1969
Yin, Barucca (b28) 2022; 207
Pamfil, Sriwattanaworachai, Desai, Pilgerstorfer, Georgatzis, Beaumont, Aragam (b22) 2020
Blei, Kucukelbir, McAuliffe (b17) 2017; 112
Calcaterra, Boldt (b32) 2008
E. Jang, S. Gu, B. Poole, Categorical Reparametrization with Gumble-Softmax, in: Proceedings of the International Conference on Learning Representations, 2017.
Pearl (b2) 2009
Lagemann, Lagemann, Taschler, Mukherjee (b4) 2023
Entner, Hoyer (b23) 2010
Cai, Wu, Huang, Chen, Fu, Hao (b6) 2024; 67
Guo, Seth, Kendrick, Zhou, Feng (b27) 2008; 172
Pearl (b1) 2000; vol. 19
Zheng (10.1016/j.neucom.2025.130281_b36) 2018; 31
Kleinberg (10.1016/j.neucom.2025.130281_b39) 2013
Chickering (10.1016/j.neucom.2025.130281_b21) 2002; 3
Granger (10.1016/j.neucom.2025.130281_b31) 1969
Li (10.1016/j.neucom.2025.130281_b5) 2023
Calcaterra (10.1016/j.neucom.2025.130281_b32) 2008
Blei (10.1016/j.neucom.2025.130281_b17) 2017; 112
Chen (10.1016/j.neucom.2025.130281_b7) 2021; 33
Spirtes (10.1016/j.neucom.2025.130281_b18) 2000
Canova (10.1016/j.neucom.2025.130281_b16) 1999
Lagemann (10.1016/j.neucom.2025.130281_b4) 2023
Castri (10.1016/j.neucom.2025.130281_b20) 2023
10.1016/j.neucom.2025.130281_b33
10.1016/j.neucom.2025.130281_b34
10.1016/j.neucom.2025.130281_b35
Runge (10.1016/j.neucom.2025.130281_b12) 2020
Yin (10.1016/j.neucom.2025.130281_b28) 2022; 207
Kap (10.1016/j.neucom.2025.130281_b37) 2021
Chen (10.1016/j.neucom.2025.130281_b8) 2022; 468
Huang (10.1016/j.neucom.2025.130281_b24) 2015
Shojaie (10.1016/j.neucom.2025.130281_b30) 2022; 9
Wang (10.1016/j.neucom.2025.130281_b10) 2023; 24
Smith (10.1016/j.neucom.2025.130281_b38) 2011; 54
Nauta (10.1016/j.neucom.2025.130281_b29) 2019; 1
Hyvärinen (10.1016/j.neucom.2025.130281_b13) 2010; 11
Pamfil (10.1016/j.neucom.2025.130281_b22) 2020
Geiger (10.1016/j.neucom.2025.130281_b15) 2015
Pearl (10.1016/j.neucom.2025.130281_b2) 2009
Cai (10.1016/j.neucom.2025.130281_b6) 2024; 67
Cai (10.1016/j.neucom.2025.130281_b9) 2023; 53
Gerhardus (10.1016/j.neucom.2025.130281_b14) 2020; 33
Chu (10.1016/j.neucom.2025.130281_b25) 2008; 9
Entner (10.1016/j.neucom.2025.130281_b23) 2010
Pearl (10.1016/j.neucom.2025.130281_b1) 2000; vol. 19
Runge (10.1016/j.neucom.2025.130281_b11) 2019; 5
Malinsky (10.1016/j.neucom.2025.130281_b26) 2018
Ogburn (10.1016/j.neucom.2025.130281_b3) 2022
Guo (10.1016/j.neucom.2025.130281_b27) 2008; 172
Kalisch (10.1016/j.neucom.2025.130281_b19) 2007; 8
References_xml – reference: C. Maddison, A. Mnih, Y. Teh, The concrete distribution: A continuous relaxation of discrete random variables, in: Proceedings of the International Conference on Learning Representations, 2017.
– volume: 468
  start-page: 22
  year: 2022
  end-page: 32
  ident: b8
  article-title: Learning Granger causality for non-stationary Hawkes processes
  publication-title: Neurocomputing
– volume: 207
  year: 2022
  ident: b28
  article-title: Deep recurrent modelling of Granger causality with latent confounding
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2022
  end-page: 15
  ident: b3
  article-title: Causal inference for social network data
  publication-title: J. Amer. Statist. Assoc.
– start-page: 23
  year: 2018
  end-page: 47
  ident: b26
  article-title: Causal structure learning from multivariate time series in settings with unmeasured confounding
  publication-title: Proceedings of 2018 ACM SIGKDD Workshop on Causal Discovery
– year: 2009
  ident: b2
  article-title: Causality
– start-page: 1917
  year: 2015
  end-page: 1925
  ident: b15
  article-title: Causal inference by identification of vector autoregressive processes with hidden components
  publication-title: International Conference on Machine Learning
– volume: 5
  start-page: eaau4996
  year: 2019
  ident: b11
  article-title: Detecting and quantifying causal associations in large nonlinear time series datasets
  publication-title: Sci. Adv.
– start-page: 243
  year: 2023
  end-page: 258
  ident: b20
  article-title: Enhancing causal discovery from robot sensor data in dynamic scenarios
  publication-title: Conference on Causal Learning and Reasoning
– start-page: 3561
  year: 2015
  end-page: 3568
  ident: b24
  article-title: Identification of time-dependent causal model: A Gaussian process treatment
  publication-title: 24th International Joint Conference on Artificial Intelligence
– volume: 33
  start-page: 2816
  year: 2021
  end-page: 2827
  ident: b7
  article-title: Causal discovery in linear non-gaussian acyclic model with multiple latent confounders
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 9
  year: 2008
  ident: b25
  article-title: Search for additive nonlinear time series causal models
  publication-title: J. Mach. Learn. Res.
– year: 2008
  ident: b32
  article-title: Approximating with gaussians
– year: 2013
  ident: b39
  article-title: Causality, Probability, and Time
– volume: 33
  start-page: 12615
  year: 2020
  end-page: 12625
  ident: b14
  article-title: High-recall causal discovery for autocorrelated time series with latent confounders
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 172
  start-page: 79
  year: 2008
  end-page: 93
  ident: b27
  article-title: Partial Granger causality—eliminating exogenous inputs and latent variables
  publication-title: J. Neurosci. Methods
– volume: 1
  start-page: 312
  year: 2019
  end-page: 340
  ident: b29
  article-title: Causal discovery with attention-based convolutional neural networks
  publication-title: Mach. Learn. Knowl. Extr.
– volume: 67
  year: 2024
  ident: b6
  article-title: Granger causal representation learning for groups of time series
  publication-title: Sci. China Inf. Sci.
– start-page: 121
  year: 2010
  end-page: 128
  ident: b23
  article-title: On causal discovery from time series data using FCI
  publication-title: Probab. Graph. Model.
– volume: 8
  year: 2007
  ident: b19
  article-title: Estimating high-dimensional directed acyclic graphs with the PC-algorithm
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 289
  year: 2022
  end-page: 319
  ident: b30
  article-title: Granger causality: A review and recent advances
  publication-title: Annu. Rev. Stat. Appl.
– volume: 112
  start-page: 859
  year: 2017
  end-page: 877
  ident: b17
  article-title: Variational inference: A review for statisticians
  publication-title: J. Amer. Statist. Assoc.
– year: 2021
  ident: b37
  article-title: The effect of noise level on causal identification with additive noise models
– start-page: 10012
  year: 2023
  end-page: 10027
  ident: b5
  article-title: Probabilities of causation: Role of observational data
  publication-title: International Conference on Artificial Intelligence and Statistics
– year: 2000
  ident: b18
  article-title: Causation, Prediction, and Search
– volume: 31
  year: 2018
  ident: b36
  article-title: Dags with no tears: Continuous optimization for structure learning
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 53
  year: 1999
  end-page: 110
  ident: b16
  article-title: Vector autoregressive models: specification, estimation, inference, and forecasting
  publication-title: Handbook of Applied Econometrics Volume 1: Macroeconomics
– volume: 11
  year: 2010
  ident: b13
  article-title: Estimation of a structural vector autoregression model using non-gaussianity
  publication-title: J. Mach. Learn. Res.
– start-page: 1595
  year: 2020
  end-page: 1605
  ident: b22
  article-title: Dynotears: Structure learning from time-series data
  publication-title: International Conference on Artificial Intelligence and Statistics
– start-page: 424
  year: 1969
  end-page: 438
  ident: b31
  article-title: Investigating causal relations by econometric models and cross-spectral methods
  publication-title: Econ.: J. Econ. Soc.
– volume: 53
  start-page: 5437
  year: 2023
  end-page: 5448
  ident: b9
  article-title: Learning dynamic causal mechanisms from non-stationary data
  publication-title: Appl. Intell.
– start-page: 1388
  year: 2020
  end-page: 1397
  ident: b12
  article-title: Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets
  publication-title: Conference on Uncertainty in Artificial Intelligence
– volume: 24
  start-page: 1
  year: 2023
  end-page: 61
  ident: b10
  article-title: Causal discovery with unobserved confounding and non-Gaussian data
  publication-title: J. Mach. Learn. Res.
– volume: 54
  start-page: 875
  year: 2011
  end-page: 891
  ident: b38
  article-title: Network modelling methods for FMRI
  publication-title: Neuroimage
– reference: D.P. Kingma, M. Welling, Auto-Encoding Variational Bayes, in: Proceedings of the International Conference on Learning Representations, 2014.
– volume: vol. 19
  year: 2000
  ident: b1
  publication-title: Models, Reasoning and Inference
– start-page: 1
  year: 2023
  end-page: 11
  ident: b4
  article-title: Deep learning of causal structures in high dimensions under data limitations
  publication-title: Nat. Mach. Intell.
– reference: E. Jang, S. Gu, B. Poole, Categorical Reparametrization with Gumble-Softmax, in: Proceedings of the International Conference on Learning Representations, 2017.
– volume: 3
  start-page: 507
  year: 2002
  end-page: 554
  ident: b21
  article-title: Optimal structure identification with greedy search
  publication-title: J. Mach. Learn. Res.
– start-page: 1388
  year: 2020
  ident: 10.1016/j.neucom.2025.130281_b12
  article-title: Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets
– year: 2000
  ident: 10.1016/j.neucom.2025.130281_b18
– ident: 10.1016/j.neucom.2025.130281_b34
– volume: 67
  issue: 5
  year: 2024
  ident: 10.1016/j.neucom.2025.130281_b6
  article-title: Granger causal representation learning for groups of time series
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-021-3724-0
– volume: 33
  start-page: 2816
  issue: 7
  year: 2021
  ident: 10.1016/j.neucom.2025.130281_b7
  article-title: Causal discovery in linear non-gaussian acyclic model with multiple latent confounders
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3045812
– volume: 3
  start-page: 507
  issue: Nov
  year: 2002
  ident: 10.1016/j.neucom.2025.130281_b21
  article-title: Optimal structure identification with greedy search
  publication-title: J. Mach. Learn. Res.
– start-page: 243
  year: 2023
  ident: 10.1016/j.neucom.2025.130281_b20
  article-title: Enhancing causal discovery from robot sensor data in dynamic scenarios
– volume: vol. 19
  year: 2000
  ident: 10.1016/j.neucom.2025.130281_b1
– start-page: 1
  year: 2022
  ident: 10.1016/j.neucom.2025.130281_b3
  article-title: Causal inference for social network data
  publication-title: J. Amer. Statist. Assoc.
– start-page: 1917
  year: 2015
  ident: 10.1016/j.neucom.2025.130281_b15
  article-title: Causal inference by identification of vector autoregressive processes with hidden components
– start-page: 10012
  year: 2023
  ident: 10.1016/j.neucom.2025.130281_b5
  article-title: Probabilities of causation: Role of observational data
– volume: 8
  issue: 3
  year: 2007
  ident: 10.1016/j.neucom.2025.130281_b19
  article-title: Estimating high-dimensional directed acyclic graphs with the PC-algorithm
  publication-title: J. Mach. Learn. Res.
– volume: 207
  year: 2022
  ident: 10.1016/j.neucom.2025.130281_b28
  article-title: Deep recurrent modelling of Granger causality with latent confounding
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118036
– year: 2008
  ident: 10.1016/j.neucom.2025.130281_b32
– volume: 468
  start-page: 22
  year: 2022
  ident: 10.1016/j.neucom.2025.130281_b8
  article-title: Learning Granger causality for non-stationary Hawkes processes
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.10.030
– volume: 54
  start-page: 875
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2025.130281_b38
  article-title: Network modelling methods for FMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.063
– ident: 10.1016/j.neucom.2025.130281_b33
– volume: 53
  start-page: 5437
  issue: 5
  year: 2023
  ident: 10.1016/j.neucom.2025.130281_b9
  article-title: Learning dynamic causal mechanisms from non-stationary data
  publication-title: Appl. Intell.
– year: 2009
  ident: 10.1016/j.neucom.2025.130281_b2
– ident: 10.1016/j.neucom.2025.130281_b35
– year: 2021
  ident: 10.1016/j.neucom.2025.130281_b37
– volume: 9
  start-page: 289
  issue: 1
  year: 2022
  ident: 10.1016/j.neucom.2025.130281_b30
  article-title: Granger causality: A review and recent advances
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-040120-010930
– start-page: 1595
  year: 2020
  ident: 10.1016/j.neucom.2025.130281_b22
  article-title: Dynotears: Structure learning from time-series data
– start-page: 53
  year: 1999
  ident: 10.1016/j.neucom.2025.130281_b16
  article-title: Vector autoregressive models: specification, estimation, inference, and forecasting
– volume: 112
  start-page: 859
  issue: 518
  year: 2017
  ident: 10.1016/j.neucom.2025.130281_b17
  article-title: Variational inference: A review for statisticians
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2017.1285773
– start-page: 424
  year: 1969
  ident: 10.1016/j.neucom.2025.130281_b31
  article-title: Investigating causal relations by econometric models and cross-spectral methods
  publication-title: Econ.: J. Econ. Soc.
– volume: 5
  start-page: eaau4996
  issue: 11
  year: 2019
  ident: 10.1016/j.neucom.2025.130281_b11
  article-title: Detecting and quantifying causal associations in large nonlinear time series datasets
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau4996
– volume: 24
  start-page: 1
  issue: 271
  year: 2023
  ident: 10.1016/j.neucom.2025.130281_b10
  article-title: Causal discovery with unobserved confounding and non-Gaussian data
  publication-title: J. Mach. Learn. Res.
– start-page: 3561
  year: 2015
  ident: 10.1016/j.neucom.2025.130281_b24
  article-title: Identification of time-dependent causal model: A Gaussian process treatment
– start-page: 23
  year: 2018
  ident: 10.1016/j.neucom.2025.130281_b26
  article-title: Causal structure learning from multivariate time series in settings with unmeasured confounding
– volume: 1
  start-page: 312
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2025.130281_b29
  article-title: Causal discovery with attention-based convolutional neural networks
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make1010019
– start-page: 1
  year: 2023
  ident: 10.1016/j.neucom.2025.130281_b4
  article-title: Deep learning of causal structures in high dimensions under data limitations
  publication-title: Nat. Mach. Intell.
– volume: 172
  start-page: 79
  issue: 1
  year: 2008
  ident: 10.1016/j.neucom.2025.130281_b27
  article-title: Partial Granger causality—eliminating exogenous inputs and latent variables
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2008.04.011
– volume: 11
  issue: 5
  year: 2010
  ident: 10.1016/j.neucom.2025.130281_b13
  article-title: Estimation of a structural vector autoregression model using non-gaussianity
  publication-title: J. Mach. Learn. Res.
– volume: 33
  start-page: 12615
  year: 2020
  ident: 10.1016/j.neucom.2025.130281_b14
  article-title: High-recall causal discovery for autocorrelated time series with latent confounders
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  issue: 5
  year: 2008
  ident: 10.1016/j.neucom.2025.130281_b25
  article-title: Search for additive nonlinear time series causal models
  publication-title: J. Mach. Learn. Res.
– year: 2013
  ident: 10.1016/j.neucom.2025.130281_b39
– start-page: 121
  year: 2010
  ident: 10.1016/j.neucom.2025.130281_b23
  article-title: On causal discovery from time series data using FCI
  publication-title: Probab. Graph. Model.
– volume: 31
  year: 2018
  ident: 10.1016/j.neucom.2025.130281_b36
  article-title: Dags with no tears: Continuous optimization for structure learning
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0017129
Score 2.4489934
Snippet Inferring causal relationships from observed data is an important task, yet it becomes challenging when the data is subject to various external interferences....
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 130281
SubjectTerms Causal discovery
External interference
Latent variables
Temporal data
Variational inference
Title Temporal latent variable structural causal model for causal discovery under external interferences
URI https://dx.doi.org/10.1016/j.neucom.2025.130281
Volume 640
WOSCitedRecordID wos001510371400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF6lgUMvhQIVlFLtobfIKHH82D1GKKgghCpERcTF8j6iOgSD8hLc-OnM7MMmUCE4cLHiUby2dj6Nv13PfEPIL8lYBLSgg2kV3SDKeTsQacIDNowFQ8Khc6Mze5KenrLBgP9pNB58LcxinJYlu7vjtx_qarCBs7F09h3urgYFA_wGp8MR3A7Htzneik2NW2OgkeWstYDVsKmPslKxRmZD5vMplo1gGxyTaOgMWKOLOZ33pj3upOU1oo2qxMSVBk6fEloj7iFNawi36dC7Ru0FhUCrNhkObNPrs3kh_81rJLm96kGR31zlRZ1pYEPhha5MJ-byy2Lkwez2KcK4ypKrNhzBBmxyKfYmVqvJRU_8iGobuLwI7HaPYbRf6jlm-eAN9uu_L-toP3u_VVmHPqFtlNlRMhwls6N8IithGnOIiyu9o_7guPoSlXZCq9font6XX5ocwZdP839684SynK-TL26tQXsWI19JQ5cbZM338aAurG8S4SFDLWSohwytIUMtQqiBDAXIeEMFGWogQ_1k0CXIbJG_h_3zg9-B670RSAjiswBW5ZFOFA-F1B3OVaoSHrJhRyHlGSqumBBKcqCfbY09EzRQ2STWIbAdzXgsu99Is7wp9TaheKa6kewyIaM2Z0zGYSTCXEiOq2m1QwI_ZdmtlVjJXnPVDkn9vGaOJlr6lwFYXr3y-zvvtEs-10j-QZow53qPrMrFrJhOfjqkPAIPkI1C
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+latent+variable+structural+causal+model+for+causal+discovery+under+external+interferences&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Cai%2C+Ruichu&rft.au=Huang%2C+Xiaokai&rft.au=Chen%2C+Wei&rft.au=Li%2C+Zijian&rft.date=2025-08-01&rft.issn=0925-2312&rft.volume=640&rft.spage=130281&rft_id=info:doi/10.1016%2Fj.neucom.2025.130281&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2025_130281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon