An Efficient Solution to Structured Optimization Problems using Recursive Matrices

We present a linear algebra framework for structured matrices and general optimization problems. The matrices and matrix operations are defined recursively to efficiently capture complex structures and enable advanced compiler optimization. In addition to common dense and sparse matrix types, we def...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 38; no. 8; pp. 33 - 39
Main Authors: Rückert, D., Stamminger, M.
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.11.2019
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a linear algebra framework for structured matrices and general optimization problems. The matrices and matrix operations are defined recursively to efficiently capture complex structures and enable advanced compiler optimization. In addition to common dense and sparse matrix types, we define mixed matrices, which allow every element to be of a different type. Using mixed matrices, the low‐ and high‐level structure of complex optimization problems can be encoded in a single type. This type is then analyzed at compile time by a recursive linear solver that picks the optimal algorithm for the given problem. For common computer vision problems, our system yields a speedup of 3–5 compared to other optimization frameworks. The BLAS performance is benchmarked against the MKL library. We achieve a significant speedup in block‐SPMV and block‐SPMM. This work is implemented and released open‐source as a header‐only extension to the C+ + math library Eigen.
AbstractList We present a linear algebra framework for structured matrices and general optimization problems. The matrices and matrix operations are defined recursively to efficiently capture complex structures and enable advanced compiler optimization. In addition to common dense and sparse matrix types, we define mixed matrices, which allow every element to be of a different type. Using mixed matrices, the low‐ and high‐level structure of complex optimization problems can be encoded in a single type. This type is then analyzed at compile time by a recursive linear solver that picks the optimal algorithm for the given problem. For common computer vision problems, our system yields a speedup of 3–5 compared to other optimization frameworks. The BLAS performance is benchmarked against the MKL library. We achieve a significant speedup in block‐SPMV and block‐SPMM. This work is implemented and released open‐source as a header‐only extension to the C+ + math library Eigen.
Author Stamminger, M.
Rückert, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Rückert
  fullname: Rückert, D.
  organization: University of Erlangen‐Nuremberg
– sequence: 2
  givenname: M.
  surname: Stamminger
  fullname: Stamminger, M.
  organization: University of Erlangen‐Nuremberg
BookMark eNp1kMFOAjEQhhuDiYAefIMmnjwAbXfb7h4JATTBYEDPzdKdkpJli21Xg0_vynp1LjPJ_81M8g1Qr3Y1IHRPyZi2NdF7M6aJ5NkV6tNUyFEmeN5DfULbWRLOb9AghAMhJJWC99FmWuO5MVZbqCPeuqqJ1tU4OryNvtGx8VDi9Snao_0uLtGrd7sKjgE3wdZ7vAHd-GA_Ab8U0VsN4RZdm6IKcPfXh-h9MX-bPY1W6-XzbLoaacZlNspYpinXO5nmMiGMpqUgIIgoIS-ApZAZA1KC1qQQjJVGasGloElSpm2Y6WSIHrq7J-8-GghRHVzj6_alYglNac4Z4S312FHauxA8GHXy9lj4s6JE_SpTrTJ1Udayk479shWc_wfVbLnoNn4AN9pvDQ
Cites_doi 10.1145/2866569
10.1109/MCSE.2009.207
10.1109/IPDPS.2013.80
10.1137/S0895479894278952
10.1109/SC.2016.58
10.1016/0024-3795(86)90159-X
10.1145/2892632
10.1137/0914063
10.1145/3132188
10.1145/383738.383741
10.1109/ICPP.2008.45
10.1109/IROS.2012.6385773
10.1109/MITS.2010.939925
10.1137/S0036144503428693
10.1007/978-3-642-15552-9_3
10.1145/1391989.1391995
10.1007/11557654_91
10.1007/BF02165411
10.1007/BFb0067700
10.1145/1362622.1362674
10.1145/1377603.1377607
ContentType Journal Article
Copyright 2019 The Author(s) Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2019 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2019 The Author(s) Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2019 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.13758
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 39
ExternalDocumentID 10_1111_cgf_13758
CGF13758
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2578-828c15cb749730214d60e606de9ae24e8ffe77ecc0a622df7c6576133d44e88c3
IEDL.DBID DRFUL
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000496301900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Jul 13 04:47:37 EDT 2025
Sat Nov 29 03:41:18 EST 2025
Wed Jan 22 16:37:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2578-828c15cb749730214d60e606de9ae24e8ffe77ecc0a622df7c6576133d44e88c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2314195205
PQPubID 30877
PageCount 7
ParticipantIDs proquest_journals_2314195205
crossref_primary_10_1111_cgf_13758
wiley_primary_10_1111_cgf_13758_CGF13758
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2019
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1996; 17
2012
2011
2010
1986; 77
2004; 46
1998
2009
2008
2007
2008; 35
1969; 13
2005
2001; 27
2003
2016; 35
1978
1999
1993; 14
2000
2017; 36
2019
2016
2013
2010; 2
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
Gustavson F. (e_1_2_8_15_2) 1998
Bebendorf M. (e_1_2_8_8_2) 2008
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
Triggs B. (e_1_2_8_30_2) 1999
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
Andersen B. S. (e_1_2_8_3_2) 2000
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_31_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
e_1_2_8_32_2
References_xml – volume: 27
  start-page: 214
  issue: 2
  year: 2001
  end-page: 244
  article-title: A recursive formulation of cholesky factorization of a matrix in packed storage
  publication-title: ACM Transactions on Mathematical Software (TOMS)
– year: 2009
– volume: 17
  start-page: 886
  issue: 4
  year: 1996
  end-page: 905
  article-title: An approximate minimum degree ordering algorithm
  publication-title: SIAM Journal on Matrix Analysis and Applications
– volume: 46
  start-page: 3
  issue: 1
  year: 2004
  end-page: 45
  article-title: Recursive blocked algorithms and hybrid data structures for dense matrix library software
  publication-title: SIAM review
– start-page: 503
  year: 2008
  end-page: 510
– volume: 35
  start-page: 22
  issue: 3
  year: 2008
  article-title: Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate
  publication-title: ACM Transactions on Mathematical Software (TOMS)
– volume: 35
  start-page: 20
  issue: 2
  year: 2016
  article-title: Simit: A language for physical simulation
  publication-title: ACM Transactions on Graphics (TOG)
– start-page: 298
  year: 1999
  end-page: 372
  article-title: Bundle adjustment—a modern synthesis
– volume: 77
  start-page: 3
  year: 1986
  end-page: 26
  article-title: On approximate factorization methods for block matrices suitable for vector and parallel processors
  publication-title: Linear algebra and its applications
– start-page: 59:1
  year: 2016
  end-page: 59:12
– year: 2003
– volume: 13
  start-page: 354
  issue: 4
  year: 1969
  end-page: 356
  article-title: Gaussian elimination is not optimal
  publication-title: Numer. Math.
– start-page: 29
  year: 2010
  end-page: 42
– start-page: 195
  year: 1998
  end-page: 206
  article-title: Recursive blocked data formats and blas's for dense linear algebra algorithms
– start-page: 261
  year: 2013
  end-page: 272
– start-page: 38
  year: 2000
  end-page: 51
  article-title: Lawra linear algebra with recursive algorithms
– year: 2010
– year: 2012
– volume: 36
  start-page: 171
  issue: 5
  year: 2017
  article-title: Opt: A domain specific language for non‐linear least squares optimization in graphics and imaging
  publication-title: ACM Transactions on Graphics
– volume: 2
  start-page: 31
  issue: 4
  year: 2010
  end-page: 43
  article-title: A tutorial on graph‐based slam
  publication-title: IEEE Intelligent Transportation Systems Magazine
– start-page: 807
  year: 2005
  end-page: 816
– year: 2008
– start-page: 573
  year: 2012
  end-page: 580
– start-page: 1
  year: 2007
  end-page: 12
– start-page: 109
  year: 2007
  end-page: 116
– volume: 35
  start-page: 21
  issue: 2
  year: 2016
  article-title: Ebb: A dsl for physical simulation on cpus and gpus
  publication-title: ACM Transactions on Graphics (TOG)
– start-page: 105
  year: 1978
  end-page: 116
  article-title: The levenberg‐marquardt algorithm: implementation and theory
– volume: 14
  start-page: 1034
  issue: 5
  year: 1993
  end-page: 1056
  article-title: Block sparse cholesky algorithms on advanced uniprocessor computers
  publication-title: SIAM Journal on Scientific Computing
– volume: 35
  start-page: 4
  issue: 1
  year: 2008
  end-page: 1
  article-title: High‐performance implementation of the level-3 blas
  publication-title: ACM Trans. Math. Softw.
– start-page: 3607
  year: 2011
  end-page: 3613
– year: 2019
– ident: e_1_2_8_21_2
– ident: e_1_2_8_27_2
– start-page: 38
  volume-title: International Workshop on Applied Parallel Computing
  year: 2000
  ident: e_1_2_8_3_2
– ident: e_1_2_8_16_2
– ident: e_1_2_8_22_2
  doi: 10.1145/2866569
– ident: e_1_2_8_32_2
  doi: 10.1109/MCSE.2009.207
– ident: e_1_2_8_12_2
  doi: 10.1109/IPDPS.2013.80
– ident: e_1_2_8_2_2
  doi: 10.1137/S0895479894278952
– ident: e_1_2_8_19_2
  doi: 10.1109/SC.2016.58
– ident: e_1_2_8_5_2
  doi: 10.1016/0024-3795(86)90159-X
– ident: e_1_2_8_10_2
  doi: 10.1145/2892632
– ident: e_1_2_8_25_2
  doi: 10.1137/0914063
– ident: e_1_2_8_23_2
– ident: e_1_2_8_13_2
  doi: 10.1145/3132188
– ident: e_1_2_8_7_2
  doi: 10.1145/383738.383741
– volume-title: Hierarchical matrices
  year: 2008
  ident: e_1_2_8_8_2
– ident: e_1_2_8_26_2
– ident: e_1_2_8_9_2
  doi: 10.1109/ICPP.2008.45
– start-page: 195
  volume-title: International Workshop on Applied Parallel Computing
  year: 1998
  ident: e_1_2_8_15_2
– ident: e_1_2_8_28_2
  doi: 10.1109/IROS.2012.6385773
– ident: e_1_2_8_17_2
  doi: 10.1109/MITS.2010.939925
– ident: e_1_2_8_20_2
– ident: e_1_2_8_14_2
  doi: 10.1137/S0036144503428693
– ident: e_1_2_8_6_2
  doi: 10.1007/978-3-642-15552-9_3
– ident: e_1_2_8_11_2
  doi: 10.1145/1391989.1391995
– ident: e_1_2_8_31_2
  doi: 10.1007/11557654_91
– ident: e_1_2_8_29_2
  doi: 10.1007/BF02165411
– start-page: 298
  volume-title: International workshop on vision algorithms
  year: 1999
  ident: e_1_2_8_30_2
– ident: e_1_2_8_24_2
  doi: 10.1007/BFb0067700
– ident: e_1_2_8_33_2
  doi: 10.1145/1362622.1362674
– ident: e_1_2_8_4_2
– ident: e_1_2_8_18_2
  doi: 10.1145/1377603.1377607
SSID ssj0004765
Score 2.2729983
Snippet We present a linear algebra framework for structured matrices and general optimization problems. The matrices and matrix operations are defined recursively to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 33
SubjectTerms Algorithms
CCS Concepts
Computer vision
Computing methodologies → Symbolic and algebraic algorithms
Linear algebra
Linear algebra algorithms
Mathematical analysis
Matrix methods
Optimization
Optimization algorithms
Sparse matrices
Structured matrices
Title An Efficient Solution to Structured Optimization Problems using Recursive Matrices
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13758
https://www.proquest.com/docview/2314195205
Volume 38
WOSCitedRecordID wos000496301900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ7U1oMefBvRajbGgxcM0IVl46mpRQ9am2qT3siyLI0HqSnV3-_sAm09mJh4I4ElZJjHN7sz3wBcpR2BblExmwkhbX0wYydSJDbjJrwnjlDlsAk2GISTCR824LbuhSn5IZYbbtoyjL_WBi6SYs3I5TS7cTsIdzeg5aHe0ia07kbR-HHVFskCv6b21qQxFbGQLuRZLv4ZjlYYcx2pmlAT7f7rI_dgp0KYpFuqxD40VH4A22u8g4cw6uakb7gjMOSQemeMLGbkxdDJfs5VSp7RmbxXXZpkWM6dKYiuk5-Skd6l14Xv5MlQ_KviCMZR_7X3YFfDFWyprVS3j0vXlwmjHI3cc2kaOAqzmVRxoTyqwixTjOEPdkTgeWnGZICpCWa0KcWboewcQzOf5eoECCIG5eA6lUlGg1BxH0EwlRQzPRkKHlhwWcs4_ig5NOI690ABxUZAFrRr6ceVGRUxgk_qct9zfAuujZx_f0Hcu4_MxenfHz2DLQRAvOwtbEMTZazOYVN-Ld6K-UWlT9_Kmc3A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEJ0gmKgHv40o6sZ48FLTlm23TbwQpGIEJAgJt2a73RIPgqHo73d22wIeTEy8NWm3aaYzO29mZ94A3MR1jtuiZAbjXBjqYMaIBI8M5mv3HplcZsMmWK_njcd-vwT3RS9Mxg-xTLgpy9D7tTJwlZBes3IxSe6sOuLdDahQVCOnDJWHQTDqrPoimesU3N6KNSZnFlKVPMvFP_3RCmSuQ1Xta4K9_33lPuzmGJM0MqU4gJKcHsLOGvPgEQwaU9LS7BHodEiRGyOLGXnVhLKfcxmTF9xO3vM-TdLPJs-kRFXKT8hA5elV6TvpapJ_mR7DKGgNm20jH69gCGWnqoFcWI6IGPXRzG2Lxq4pMZ6Jpc-lTaWXJJIx_MUmd207TphwMTjBmDameNMT9RMoT2dTeQoEMYM0cZ1MBKOuJ30HYTAVFGM94XHfrcJ1IeTwI2PRCIvoAwUUagFVoVaIP8wNKQ0RflLLd2zTqcKtFvTvLwibj4G-OPv7o1ew1R52O2Hnqfd8DtsIh_ys07AGZZS3vIBN8bV4S-eXuXJ9Aye40bA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1qK6IHv8X6uYgHL5Ek3WSz4KW0jYq1lmqht5BsNsWDaWmqv9_ZTdLWgyB4CyQbwmTfzJvZnbcA13EjRLcomcHCUBhqYcaIRBgZjOvwHpmhzA-bYL2eNxrxfgXuyl6YXB9iUXBTyND-WgFcTuNkBeVinNxaDeS7a1CjDncRlrX2wB92l32RzHVKbW-lGlMoC6mdPIvBP-PRkmSuUlUda_yd_33lLmwXHJM080mxBxWZ7sPWivLgAQyaKelo9QgMOqSsjZH5hLxqQdnPmYzJC7qTj6JPk_Tzk2cyonbKj8lA1enV1nfyrEX-ZXYIQ7_z1nowiuMVDKFwqhrIheWIiFGOMLctGrumxHwmljyUNpVekkjG8BeboWvbccKEi8kJ5rQxxZueaBxBNZ2k8hgIcgZp4jiZCEZdT3IHaTAVFHM94YXcrcNVaeRgmqtoBGX2gQYKtIHqcFaaPyiAlAVIP6nFHdt06nCjDf37C4LWva8vTv7-6CVs9Nt-0H3sPZ3CJrIhnjcankEVzS3PYV18zd-z2UUxt74B9uDRKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Solution+to+Structured+Optimization+Problems+using+Recursive+Matrices&rft.jtitle=Computer+graphics+forum&rft.au=R%C3%BCckert%2C+D&rft.au=Stamminger%2C+M&rft.date=2019-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=38&rft.issue=8&rft.spage=33&rft.epage=39&rft_id=info:doi/10.1111%2Fcgf.13758&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon