On Classical Inference of a Flexible Semi‐Parametric Class of Distributions Under a Joint Balanced Progressive Censoring Scheme

ABSTRACT The paper deals with the estimation procedures for the proportional hazard class of distributions under a two‐sample balanced joint progressive censoring scheme. The baseline hazard function is assumed to be piecewise constant, instead of any specific form. This adds flexibility to the prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied stochastic models in business and industry Jg. 41; H. 1
Hauptverfasser: Bhattacharyya, Dhrubasish, Kundu, Debasis
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.01.2025
Wiley Subscription Services, Inc
Schlagworte:
ISSN:1524-1904, 1526-4025
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT The paper deals with the estimation procedures for the proportional hazard class of distributions under a two‐sample balanced joint progressive censoring scheme. The baseline hazard function is assumed to be piecewise constant, instead of any specific form. This adds flexibility to the proposed model, and the shape of the underlying hazard function is completely data‐driven. Since the complicated form of the likelihood function does not yield closed‐form estimators, we propose a variant of the Expectation‐Maximization algorithm, known as the Expectation Conditional Maximization (ECM) algorithm, for obtaining maximum likelihood estimates of the model parameters. This leads to explicit expressions for the iterative constrained maximization steps of the algorithm. An extension to the case when the cut points are unknown has also been considered for dealing with problems involving real data. Simulation results and illustrations using real data have also been presented.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1524-1904
1526-4025
DOI:10.1002/asmb.2924