An Extended Reweighted ℓ1 Minimization Algorithm for Image Restoration

This paper proposes an effective extended reweighted ℓ1 minimization algorithm (ERMA) to solve the basis pursuit problem minu∈Rn{||u||1:Au=f} in compressed sensing, where A∈Rm×n, m≪n. The fast algorithm is based on linearized Bregman iteration with soft thresholding operator and generalized inverse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) Jg. 9; H. 24; S. 3224
Hauptverfasser: Huang, Sining, Chen, Yupeng, Qiao, Tiantian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.12.2021
Schlagworte:
ISSN:2227-7390, 2227-7390
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes an effective extended reweighted ℓ1 minimization algorithm (ERMA) to solve the basis pursuit problem minu∈Rn{||u||1:Au=f} in compressed sensing, where A∈Rm×n, m≪n. The fast algorithm is based on linearized Bregman iteration with soft thresholding operator and generalized inverse iteration. At the same time, it also combines the iterative reweighted strategy that is used to solve minu∈Rn{||u||pp:Au=f} problem, with the weight ωi(u,p)=(ε+|ui|2)p/2−1. Numerical experiments show that this ℓ1 minimization persistently performs better than other methods. Especially when p=0, the restored signal by the algorithm has the highest signal to noise ratio. Additionally, this approach has no effect on workload or calculation time when matrix A is ill-conditioned.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math9243224