An Extended Reweighted ℓ1 Minimization Algorithm for Image Restoration

This paper proposes an effective extended reweighted ℓ1 minimization algorithm (ERMA) to solve the basis pursuit problem minu∈Rn{||u||1:Au=f} in compressed sensing, where A∈Rm×n, m≪n. The fast algorithm is based on linearized Bregman iteration with soft thresholding operator and generalized inverse...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics (Basel) Ročník 9; číslo 24; s. 3224
Hlavní autori: Huang, Sining, Chen, Yupeng, Qiao, Tiantian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.12.2021
Predmet:
ISSN:2227-7390, 2227-7390
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper proposes an effective extended reweighted ℓ1 minimization algorithm (ERMA) to solve the basis pursuit problem minu∈Rn{||u||1:Au=f} in compressed sensing, where A∈Rm×n, m≪n. The fast algorithm is based on linearized Bregman iteration with soft thresholding operator and generalized inverse iteration. At the same time, it also combines the iterative reweighted strategy that is used to solve minu∈Rn{||u||pp:Au=f} problem, with the weight ωi(u,p)=(ε+|ui|2)p/2−1. Numerical experiments show that this ℓ1 minimization persistently performs better than other methods. Especially when p=0, the restored signal by the algorithm has the highest signal to noise ratio. Additionally, this approach has no effect on workload or calculation time when matrix A is ill-conditioned.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math9243224