On Eigenvalue and Eigenvector Estimates for Nonnegative Definite Operators
We present a perturbation approach to the Rayleigh-Ritz approximations in the sense of Davis, Kahan, and Weinberger. We restrict ourselves to nonnegative definite self-adjoint operators and obtain sharp bounds of relative type for both eigenvalues and eigenvectors. The operators are allowed to have...
Uloženo v:
| Vydáno v: | SIAM journal on matrix analysis and applications Ročník 28; číslo 4; s. 1097 - 1125 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2006
|
| Témata: | |
| ISSN: | 0895-4798, 1095-7162 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a perturbation approach to the Rayleigh-Ritz approximations in the sense of Davis, Kahan, and Weinberger. We restrict ourselves to nonnegative definite self-adjoint operators and obtain sharp bounds of relative type for both eigenvalues and eigenvectors. The operators are allowed to have nontrivial null-spaces, and the test spaces need not be contained in the domain of the considered operator. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0895-4798 1095-7162 |
| DOI: | 10.1137/050626533 |