Regulatory Adoption of AI, ML, Computational Modeling & Simulation in In-Silico Clinical Trials for Medical Devices: A Systematic Review

This study explores the revolutionary potential of in-silico clinical trials (ISCTs) in medical device development, emphasizing the integration of computational modeling and simulation (CM&S), artificial intelligence (AI), and machine learning (ML). It evaluates regulatory advancements by the FD...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Therapeutic innovation & regulatory science
Hlavní autoři: De, Arindam, Lohani, Alka
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland 07.10.2025
Témata:
ISSN:2168-4790, 2168-4804, 2168-4804
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study explores the revolutionary potential of in-silico clinical trials (ISCTs) in medical device development, emphasizing the integration of computational modeling and simulation (CM&S), artificial intelligence (AI), and machine learning (ML). It evaluates regulatory advancements by the FDA, EMA, and PMDA, identifies barriers to global ISCTs adoption, and proposes strategies to enhance credibility, standardization, and ethical alignment. A systematic review following PRISMA 2020 guidelines reviewed 72 studies (2014-2025) from Scopus, PubMed, Web of Science, and regulatory reports. Excluding non-regulatory or non-medical device research, inclusion criteria emphasized ISCTs technologies and regulatory frameworks. ISCTs employ CM&S techniques, including finite element analysis, computational fluid dynamics, and agent-based modeling, to simulate medical device performance and generate synthetic patient cohorts, thereby reducing costs and addressing ethical concerns. AI/ML further enhances predictive accuracy and optimizes trial design. Regulatory agencies have developed advanced frameworks like the FDA's model credibility and AI guidelines, the EMA promotes its 3R Guidelines, and the PMDA supports computational validation through dedicated subcommittees. Key challenges include regulatory fragmentation, limited data accessibility, computational complexity, and ethical risks such as algorithmic bias. Proposed solutions include global harmonization of regulatory guidelines, explainable AI implementation, federated learning adoption for secure data collaboration, and hybrid trial designs that integrate ISCTs with traditional methodologies. ISCTs can revolutionize the development and assessment of medical devices. Standardized validation frameworks, regulatory standards, and interdisciplinary cooperation are required to address these issues. Clear guidelines must ensure ISCTs legitimacy and acceptance and promote safer and ethical medical innovations.
AbstractList This study explores the revolutionary potential of in-silico clinical trials (ISCTs) in medical device development, emphasizing the integration of computational modeling and simulation (CM&S), artificial intelligence (AI), and machine learning (ML). It evaluates regulatory advancements by the FDA, EMA, and PMDA, identifies barriers to global ISCTs adoption, and proposes strategies to enhance credibility, standardization, and ethical alignment. A systematic review following PRISMA 2020 guidelines reviewed 72 studies (2014-2025) from Scopus, PubMed, Web of Science, and regulatory reports. Excluding non-regulatory or non-medical device research, inclusion criteria emphasized ISCTs technologies and regulatory frameworks. ISCTs employ CM&S techniques, including finite element analysis, computational fluid dynamics, and agent-based modeling, to simulate medical device performance and generate synthetic patient cohorts, thereby reducing costs and addressing ethical concerns. AI/ML further enhances predictive accuracy and optimizes trial design. Regulatory agencies have developed advanced frameworks like the FDA's model credibility and AI guidelines, the EMA promotes its 3R Guidelines, and the PMDA supports computational validation through dedicated subcommittees. Key challenges include regulatory fragmentation, limited data accessibility, computational complexity, and ethical risks such as algorithmic bias. Proposed solutions include global harmonization of regulatory guidelines, explainable AI implementation, federated learning adoption for secure data collaboration, and hybrid trial designs that integrate ISCTs with traditional methodologies. ISCTs can revolutionize the development and assessment of medical devices. Standardized validation frameworks, regulatory standards, and interdisciplinary cooperation are required to address these issues. Clear guidelines must ensure ISCTs legitimacy and acceptance and promote safer and ethical medical innovations.
This study explores the revolutionary potential of in-silico clinical trials (ISCTs) in medical device development, emphasizing the integration of computational modeling and simulation (CM&S), artificial intelligence (AI), and machine learning (ML). It evaluates regulatory advancements by the FDA, EMA, and PMDA, identifies barriers to global ISCTs adoption, and proposes strategies to enhance credibility, standardization, and ethical alignment.OBJECTIVEThis study explores the revolutionary potential of in-silico clinical trials (ISCTs) in medical device development, emphasizing the integration of computational modeling and simulation (CM&S), artificial intelligence (AI), and machine learning (ML). It evaluates regulatory advancements by the FDA, EMA, and PMDA, identifies barriers to global ISCTs adoption, and proposes strategies to enhance credibility, standardization, and ethical alignment.A systematic review following PRISMA 2020 guidelines reviewed 72 studies (2014-2025) from Scopus, PubMed, Web of Science, and regulatory reports. Excluding non-regulatory or non-medical device research, inclusion criteria emphasized ISCTs technologies and regulatory frameworks.METHODSA systematic review following PRISMA 2020 guidelines reviewed 72 studies (2014-2025) from Scopus, PubMed, Web of Science, and regulatory reports. Excluding non-regulatory or non-medical device research, inclusion criteria emphasized ISCTs technologies and regulatory frameworks.ISCTs employ CM&S techniques, including finite element analysis, computational fluid dynamics, and agent-based modeling, to simulate medical device performance and generate synthetic patient cohorts, thereby reducing costs and addressing ethical concerns. AI/ML further enhances predictive accuracy and optimizes trial design. Regulatory agencies have developed advanced frameworks like the FDA's model credibility and AI guidelines, the EMA promotes its 3R Guidelines, and the PMDA supports computational validation through dedicated subcommittees. Key challenges include regulatory fragmentation, limited data accessibility, computational complexity, and ethical risks such as algorithmic bias. Proposed solutions include global harmonization of regulatory guidelines, explainable AI implementation, federated learning adoption for secure data collaboration, and hybrid trial designs that integrate ISCTs with traditional methodologies.RESULTISCTs employ CM&S techniques, including finite element analysis, computational fluid dynamics, and agent-based modeling, to simulate medical device performance and generate synthetic patient cohorts, thereby reducing costs and addressing ethical concerns. AI/ML further enhances predictive accuracy and optimizes trial design. Regulatory agencies have developed advanced frameworks like the FDA's model credibility and AI guidelines, the EMA promotes its 3R Guidelines, and the PMDA supports computational validation through dedicated subcommittees. Key challenges include regulatory fragmentation, limited data accessibility, computational complexity, and ethical risks such as algorithmic bias. Proposed solutions include global harmonization of regulatory guidelines, explainable AI implementation, federated learning adoption for secure data collaboration, and hybrid trial designs that integrate ISCTs with traditional methodologies.ISCTs can revolutionize the development and assessment of medical devices. Standardized validation frameworks, regulatory standards, and interdisciplinary cooperation are required to address these issues. Clear guidelines must ensure ISCTs legitimacy and acceptance and promote safer and ethical medical innovations.CONCLUSIONISCTs can revolutionize the development and assessment of medical devices. Standardized validation frameworks, regulatory standards, and interdisciplinary cooperation are required to address these issues. Clear guidelines must ensure ISCTs legitimacy and acceptance and promote safer and ethical medical innovations.
Author Lohani, Alka
De, Arindam
Author_xml – sequence: 1
  givenname: Arindam
  surname: De
  fullname: De, Arindam
– sequence: 2
  givenname: Alka
  surname: Lohani
  fullname: Lohani, Alka
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41055689$$D View this record in MEDLINE/PubMed
BookMark eNo9kU1u2zAQhYnCQfPTXKCLgquiiyghKZIiuzOctDVgI0CcrgmaHBksJNEVpQa-QY4dOrY7mxm8-eYt5l2iSRc7QOgzJbeUkOou8ZJzWhAmCkJURQv2AV0wKlXBFeGT01xpco6uU_pDcmklKqY-onNOiRBS6Qv0-gSbsbFD7Hd46uN2CLHDscbT-Q1eLm7wLLbbcbB72TZ4GT00odvgr3gV2v3dHg8dnnfFKjTBRTzL--Ay-9wH2yRcxx4vwb9L9_AvOEjf8RSvdmmANt87_JRVePmEzurMw_WxX6HfPx6eZ7-KxePP-Wy6KBwTcig0KC0596A9MKmZFdxK76mnmhHB61ILRW0pK2Ild75mfu3kWlaqtp5wzssr9O3gu-3j3xHSYNqQHDSN7SCOyZQsGxBWCpXRL0d0XLfgzbYPre135vS9DLAD4PqYUg_1f4QSs0_JHFIyOSXznpJh5RtMUINr
Cites_doi 10.21275/ART20203995
10.1093/eurheartj/ehad784
10.1088/1742-6596/1679/2/022057
10.1080/10255842.2018.1545017
10.1001/jamanetworkopen.2022.31609
10.1136/bmj.n71
10.1016/j.heares.2023.108744
10.1117/12.2255746
10.1007/s13311-023-01384-2
10.1007/978-3-030-17971-7_72
10.1007/s11095-017-2215-2
10.1016/j.cmpb.2023.107739
10.1038/s41467-021-23998-w
10.1093/bib/bby043
10.1147/rd.363.0329
10.1109/EMBC.2016.7590667
10.1016/j.cmpb.2023.107735
10.1038/s41598-018-25229-7
10.1016/j.jbiomech.2014.12.019
10.1007/s12553-019-00386-5
10.1111/aor.14597
10.1109/FMEC.2019.8795362
10.1088/2516-1091/ad04c0
10.1109/TBME.2019.2915526
10.48550/arXiv.2209.09023
10.1007/s11517-024-03215-8
10.3389/fdata.2023.1085571
10.1098/rsos.172096
10.1146/annurev-publhealth-040617-014317
10.1016/j.drudis.2025.104322
10.1007/s12553-023-00738-2
10.17219/dmp/142447
10.1038/s41746-025-01679-y
10.3390/biomimetics5030044
10.1073/pnas.082080899
10.1007/s13239-025-00801-1
10.1007/978-3-030-76951-2_10
10.3389/fphy.2020.593111
10.1371/journal.pone.0184216
10.1057/jos.2016.7
10.1007/978-3-030-26837-4_12
10.1080/02713683.2016.1175019
10.1109/JBHI.2019.2949888
10.1111/cts.13897
10.1016/S0140-6736(22)02243-7
10.1093/eurpub/ckae144.1210
10.1056/NEJMra1512592
10.1002/psp4.12868
10.1002/mp.17442
10.1109/COMPSAC.2017.164
10.1007/978-1-0716-0368-0_13
10.1016/j.ymeth.2020.01.011
10.1016/j.cmpb.2023.107525
10.1177/0954411917702931
10.1109/WSC.2014.7019874
10.1002/pds.4882
ContentType Journal Article
Copyright 2025. The Author(s), under exclusive licence to The Drug Information Association, Inc.
Copyright_xml – notice: 2025. The Author(s), under exclusive licence to The Drug Information Association, Inc.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1007/s43441-025-00871-2
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2168-4804
ExternalDocumentID 41055689
10_1007_s43441_025_00871_2
Genre Journal Article
Review
GroupedDBID 01A
0R~
2JY
406
53G
7RV
AACDK
AAHNG
AAJBT
AARDL
AASML
AATNV
AAUYE
AAYXX
ABAKF
ABAWP
ABBRH
ABCCA
ABDBE
ABECU
ABFSG
ABFTV
ABJNI
ABKCH
ABMQK
ABRTQ
ABTEG
ABTKH
ACAOD
ACDTI
ACDXX
ACGFS
ACGOD
ACHSB
ACPRK
ACSTC
ACZOJ
ADBBV
ADEBD
ADTPH
ADYFF
AEFQL
AEMSY
AENEX
AERKM
AEUHG
AEWDL
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AFRAH
AGMZJ
AGQEE
AHMBA
AHPBZ
AHWEU
AIGIU
AILAN
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARTOV
ATHPR
AUTPY
AYAKG
AYFIA
BENPR
BGNMA
BKOMP
CITATION
DPUIP
EBLON
EBS
EX3
FIGPU
FNLPD
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
HF~
HZ~
IKXTQ
IWAJR
J8X
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
O9-
P.B
PT4
ROL
RSV
S01
SCNPE
SFC
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
WOW
ZCA
AESKC
NPM
7X8
ID FETCH-LOGICAL-c256t-9e89644de9de2692a54a6dd1d192054f39581a3670a64cdf2dbc6b678fad04443
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001588259000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-4790
2168-4804
IngestDate Wed Oct 08 03:14:20 EDT 2025
Wed Oct 08 04:07:11 EDT 2025
Sat Nov 29 07:17:46 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords USFDA
EMA
Computer modelling and simulation
Medical device
Artificial intelligence
In-silico clinical trials
PMDA
Language English
License 2025. The Author(s), under exclusive licence to The Drug Information Association, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c256t-9e89644de9de2692a54a6dd1d192054f39581a3670a64cdf2dbc6b678fad04443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 41055689
PQID 3258102358
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3258102358
pubmed_primary_41055689
crossref_primary_10_1007_s43441_025_00871_2
PublicationCentury 2000
PublicationDate 2025-10-07
PublicationDateYYYYMMDD 2025-10-07
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-07
  day: 07
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Therapeutic innovation & regulatory science
PublicationTitleAlternate Ther Innov Regul Sci
PublicationYear 2025
References P Favre (871_CR71) 2023; 241
F Crea (871_CR69) 2023; 44
A Simalatsar (871_CR10) 2023
E Sulis (871_CR32) 2023; 236
G Wiederhold (871_CR37) 1992; 36
871_CR38
871_CR39
M Calder (871_CR17) 2018; 5
S Kijima (871_CR62) 2022; 11
F Pappalardo (871_CR4) 2019; 20
JB Fink (871_CR27) 2017; 34
S Li (871_CR35) 2019; 22
MI Miller (871_CR40) 2023; 20
E Bonabeau (871_CR29) 2002; 99
R Colasanti (871_CR34) 2022; 400
WJ Eppich (871_CR16) 2019
MJ Page (871_CR3) 2021; 372
CM Macal (871_CR30) 2016; 10
M Wang (871_CR21) 2018; 8
E Zdravevski (871_CR46) 2017; 12
871_CR28
L Spahić (871_CR45) 2020
A Badano (871_CR51) 2023; 5
Ž Kovačević (871_CR44) 2020; 10
AA Vidovszky (871_CR50) 2024; 17
MM Bhatti (871_CR24) 2020
M Viceconti (871_CR53) 2021; 185
M Viceconti (871_CR8) 2020; 24
T Leclère (871_CR18) 2023; 432
R Scuoppo (871_CR47) 2025; 63
N Kladovasilakis (871_CR22) 2020; 5
A Corti (871_CR36) 2023; 241
E Abadi (871_CR7) 2024; 51
871_CR60
871_CR61
871_CR63
871_CR64
871_CR65
871_CR66
871_CR67
871_CR68
G Cafri (871_CR42) 2019; 28
871_CR15
871_CR59
B Mahesh (871_CR43) 2020; 9
D Roesler (871_CR9) 2024; 34
IA Magomedov (871_CR19) 2020; 1679
M Taylor (871_CR20) 2015; 48
F Castiglione (871_CR33) 2020
VK Dommeti (871_CR23) 2023; 60
M Tracy (871_CR31) 2018; 39
S Askin (871_CR70) 2023; 13
D Roesler (871_CR49) 2024; 34
871_CR1
A Sertkaya (871_CR2) 2022; 5
L Reid (871_CR25) 2021
K Mehmood (871_CR6) 2023; 47
BP Kovatchev (871_CR52) 2025; 8
M Viceconti (871_CR12) 2017; 231
871_CR54
871_CR11
871_CR55
871_CR56
O Faris (871_CR13) 2017; 376
871_CR57
871_CR58
871_CR48
M Caixinha (871_CR41) 2017; 42
R Scuoppo (871_CR5) 2025
H Mirinejad (871_CR14) 2020; 67
A Sarrami-Foroushani (871_CR26) 2021; 12
K Wang (871_CR72) 2025; 30
References_xml – volume: 9
  start-page: 381
  issue: 1
  year: 2020
  ident: 871_CR43
  publication-title: IJSR
  doi: 10.21275/ART20203995
– ident: 871_CR54
– volume: 44
  start-page: 4815
  issue: 46
  year: 2023
  ident: 871_CR69
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehad784
– volume: 1679
  issue: 2
  year: 2020
  ident: 871_CR19
  publication-title: J Phys: Conf Ser
  doi: 10.1088/1742-6596/1679/2/022057
– volume: 22
  start-page: 217
  issue: 2
  year: 2019
  ident: 871_CR35
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255842.2018.1545017
– volume: 5
  issue: 9
  year: 2022
  ident: 871_CR2
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2022.31609
– volume: 372
  year: 2021
  ident: 871_CR3
  publication-title: BMJ
  doi: 10.1136/bmj.n71
– volume: 432
  year: 2023
  ident: 871_CR18
  publication-title: Hear Res
  doi: 10.1016/j.heares.2023.108744
– ident: 871_CR15
  doi: 10.1117/12.2255746
– volume: 20
  start-page: 1066
  issue: 4
  year: 2023
  ident: 871_CR40
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-023-01384-2
– ident: 871_CR60
– start-page: 483
  volume-title: CMBEBIH 2019
  year: 2020
  ident: 871_CR45
  doi: 10.1007/978-3-030-17971-7_72
– volume: 34
  start-page: 2568
  issue: 12
  year: 2017
  ident: 871_CR27
  publication-title: Pharm Res
  doi: 10.1007/s11095-017-2215-2
– volume: 241
  year: 2023
  ident: 871_CR36
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2023.107739
– ident: 871_CR67
– ident: 871_CR63
– volume: 12
  start-page: 3861
  issue: 1
  year: 2021
  ident: 871_CR26
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-23998-w
– ident: 871_CR58
– volume: 20
  start-page: 1699
  issue: 5
  year: 2019
  ident: 871_CR4
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby043
– volume: 36
  start-page: 329
  issue: 3
  year: 1992
  ident: 871_CR37
  publication-title: IBM J Res Dev
  doi: 10.1147/rd.363.0329
– ident: 871_CR11
  doi: 10.1109/EMBC.2016.7590667
– volume: 241
  year: 2023
  ident: 871_CR71
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2023.107735
– volume: 8
  issue: 1
  year: 2018
  ident: 871_CR21
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-25229-7
– volume: 48
  start-page: 767
  issue: 5
  year: 2015
  ident: 871_CR20
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2014.12.019
– volume: 10
  start-page: 151
  issue: 1
  year: 2020
  ident: 871_CR44
  publication-title: Health Technol
  doi: 10.1007/s12553-019-00386-5
– volume: 47
  start-page: 1452
  issue: 9
  year: 2023
  ident: 871_CR6
  publication-title: Artif Organs
  doi: 10.1111/aor.14597
– ident: 871_CR39
  doi: 10.1109/FMEC.2019.8795362
– volume: 5
  issue: 4
  year: 2023
  ident: 871_CR51
  publication-title: Prog Biomed Eng
  doi: 10.1088/2516-1091/ad04c0
– volume: 67
  start-page: 471
  issue: 2
  year: 2020
  ident: 871_CR14
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2019.2915526
– ident: 871_CR48
  doi: 10.48550/arXiv.2209.09023
– ident: 871_CR55
– volume: 63
  start-page: 467
  issue: 2
  year: 2025
  ident: 871_CR47
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-024-03215-8
– year: 2023
  ident: 871_CR10
  publication-title: Front Big Data
  doi: 10.3389/fdata.2023.1085571
– volume: 5
  issue: 6
  year: 2018
  ident: 871_CR17
  publication-title: R Soc Open Sci
  doi: 10.1098/rsos.172096
– volume: 39
  start-page: 77
  year: 2018
  ident: 871_CR31
  publication-title: Annu Rev Public Health
  doi: 10.1146/annurev-publhealth-040617-014317
– ident: 871_CR66
– volume: 30
  issue: 3
  year: 2025
  ident: 871_CR72
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2025.104322
– volume: 13
  start-page: 203
  issue: 2
  year: 2023
  ident: 871_CR70
  publication-title: Health Technol
  doi: 10.1007/s12553-023-00738-2
– ident: 871_CR59
– volume: 60
  start-page: 385
  issue: 3
  year: 2023
  ident: 871_CR23
  publication-title: Dent Med Probl
  doi: 10.17219/dmp/142447
– volume: 8
  issue: 1
  year: 2025
  ident: 871_CR52
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-025-01679-y
– volume: 5
  start-page: 44
  issue: 3
  year: 2020
  ident: 871_CR22
  publication-title: Biomimetics
  doi: 10.3390/biomimetics5030044
– volume: 99
  start-page: 7280
  issue: suppl_3
  year: 2002
  ident: 871_CR29
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.082080899
– year: 2025
  ident: 871_CR5
  publication-title: Cardiovasc Eng Tech
  doi: 10.1007/s13239-025-00801-1
– ident: 871_CR1
– ident: 871_CR56
– start-page: 205
  volume-title: Biomedical visualisation
  year: 2021
  ident: 871_CR25
  doi: 10.1007/978-3-030-76951-2_10
– year: 2020
  ident: 871_CR24
  publication-title: Front Phys
  doi: 10.3389/fphy.2020.593111
– volume: 12
  issue: 9
  year: 2017
  ident: 871_CR46
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0184216
– volume: 10
  start-page: 144
  issue: 2
  year: 2016
  ident: 871_CR30
  publication-title: J Simul
  doi: 10.1057/jos.2016.7
– start-page: 85
  volume-title: Healthcare Simulation research: a practical guide
  year: 2019
  ident: 871_CR16
  doi: 10.1007/978-3-030-26837-4_12
– volume: 42
  start-page: 1
  issue: 1
  year: 2017
  ident: 871_CR41
  publication-title: Curr Eye Res
  doi: 10.1080/02713683.2016.1175019
– ident: 871_CR65
– volume: 24
  start-page: 4
  issue: 1
  year: 2020
  ident: 871_CR8
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2949888
– ident: 871_CR61
– volume: 17
  issue: 7
  year: 2024
  ident: 871_CR50
  publication-title: Clin Transl Sci
  doi: 10.1111/cts.13897
– volume: 400
  start-page: S33
  year: 2022
  ident: 871_CR34
  publication-title: Lancet
  doi: 10.1016/S0140-6736(22)02243-7
– volume: 34
  start-page: 44.1210
  year: 2024
  ident: 871_CR9
  publication-title: Eur J Public Health
  doi: 10.1093/eurpub/ckae144.1210
– volume: 376
  start-page: 1350
  issue: 14
  year: 2017
  ident: 871_CR13
  publication-title: New Engl J Med.
  doi: 10.1056/NEJMra1512592
– volume: 11
  start-page: 1552
  issue: 12
  year: 2022
  ident: 871_CR62
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1002/psp4.12868
– volume: 51
  start-page: 9394
  issue: 12
  year: 2024
  ident: 871_CR7
  publication-title: Med Phys
  doi: 10.1002/mp.17442
– ident: 871_CR38
  doi: 10.1109/COMPSAC.2017.164
– start-page: 661
  volume-title: Complex social and behavioral systems : game theory and agent-based models
  year: 2020
  ident: 871_CR33
  doi: 10.1007/978-1-0716-0368-0_13
– ident: 871_CR68
– volume: 185
  start-page: 120
  year: 2021
  ident: 871_CR53
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.01.011
– volume: 34
  issue: Supplement_3
  year: 2024
  ident: 871_CR49
  publication-title: Eur J Public Health
  doi: 10.1093/eurpub/ckae144.1210
– volume: 236
  year: 2023
  ident: 871_CR32
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2023.107525
– ident: 871_CR64
– volume: 231
  start-page: 455
  issue: 5
  year: 2017
  ident: 871_CR12
  publication-title: Proc Inst Mech Eng [H]
  doi: 10.1177/0954411917702931
– ident: 871_CR28
  doi: 10.1109/WSC.2014.7019874
– ident: 871_CR57
– volume: 28
  start-page: 1440
  issue: 11
  year: 2019
  ident: 871_CR42
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.4882
SSID ssj0000985728
Score 2.3233616
SecondaryResourceType review_article
online_first
Snippet This study explores the revolutionary potential of in-silico clinical trials (ISCTs) in medical device development, emphasizing the integration of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Title Regulatory Adoption of AI, ML, Computational Modeling & Simulation in In-Silico Clinical Trials for Medical Devices: A Systematic Review
URI https://www.ncbi.nlm.nih.gov/pubmed/41055689
https://www.proquest.com/docview/3258102358
WOSCitedRecordID wos001588259000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 2168-4804
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000985728
  issn: 2168-4790
  databaseCode: RSV
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9tAEB1S00Mu_U7itDVTCL5US7wrWdL2ZtqGBppgaqf4JrTaXTA4UvFHwP8gPzuzK9mmEB_8B1bLzGjmaUbzHsBFoWKCHTZhmhvFIisUU3mkKZajnpLWCsELLzaR3N6mk4kcHkGwd4J_uYhCKtnMya46_jTOXMLlcb2sNfq7baj0ZNpPvJaq4LHvGPWaJZnnT_m_EO1Bl77KXL0-7H5v4FWDJnFQu_8tHJnyHXSHNR31OsDxbrtqEWAXhzui6vV7ePxTC9FX8zUOdOWTB1YWB9cB3vwOsFZ8aLqF6FTT3O46HTOa3jeqXzgt8bpko-mMIgobktEZjn1YIwFibCZB-MP4nPQNBzjaskdjPZr4AHdXP8fff7FGmYEVBJGWTJpUEpDSRmojYinyfpTHWnNNeJEwoA1lP-W544bL46jQVmhVxIrqos21I6gLT6BVVqU5A7TCGEOwwvRVHFHhkPQNqjTPe1rrhKuwDV83bsr-1QQc2ZZq2Zs-I9Nn3vSZaMOXjSczek_c8CMvTbVaZKGgKzlyn7QNp7WLt-dFXiU0lecHPesjHAvndfc3QfIJWsv5ynyGl8XDcrqYd-BFMkk7PkSfAFSE3CI
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulatory+Adoption+of+AI%2C+ML%2C+Computational+Modeling+%26+Simulation+in+In-Silico+Clinical+Trials+for+Medical+Devices%3A+A+Systematic+Review&rft.jtitle=Therapeutic+innovation+%26+regulatory+science&rft.au=De%2C+Arindam&rft.au=Lohani%2C+Alka&rft.date=2025-10-07&rft.eissn=2168-4804&rft_id=info:doi/10.1007%2Fs43441-025-00871-2&rft_id=info%3Apmid%2F41055689&rft.externalDocID=41055689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-4790&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-4790&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-4790&client=summon