Resource‐Efficient Anomaly Detection in Industrial Control Systems With Quantized Recurrent Variational Autoencoder

This work presents a novel solution for multivariate time series anomaly detection in industrial control systems (ICSs), specifically tailored for resource‐constrained environments. At its core, the quantized gated recurrent unit variational autoencoder (Q‐GRU‐VAE) architecture, a significant evolut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET collaborative intelligent manufacturing Jg. 7; H. 1
Hauptverfasser: Fährmann, Daniel, Ihlefeld, Malte, Kuijper, Arjan, Damer, Naser
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Wuhan John Wiley & Sons, Inc 01.01.2025
Schlagworte:
ISSN:2516-8398, 2516-8398
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a novel solution for multivariate time series anomaly detection in industrial control systems (ICSs), specifically tailored for resource‐constrained environments. At its core, the quantized gated recurrent unit variational autoencoder (Q‐GRU‐VAE) architecture, a significant evolution from conventional methods, offers an extremely lightweight yet highly effective solution. By integrating gated recurrent units (GRUs) in place of long short‐term memory (LSTM) cells within a variational autoencoder (VAE) framework, and employing channel‐wise dynamic post‐training quantization (DPTQ), this model dramatically reduces hardware resource demands. The proposed solution exhibits performance on par with existing methods on the widely used secure water treatment (SWaT) and water distribution (WADI) benchmarks, while being tailored towards applications where computational resources are limited. This dual achievement of minimal resource consumption and preserved model efficacy paves the way for deploying advanced anomaly detection in resource‐constrained environments, marking a significant leap forward in enhancing the resilience and efficiency of ICSs.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2516-8398
2516-8398
DOI:10.1049/cim2.70032