An intelligent MIMO run-to-run controller for semiconductor manufacturing processes based on an enhanced twin-delayed deep deterministic policy gradient algorithm

Achieving accurate target tracking in semiconductor manufacturing processes with complex nonlinearities, strong coupling, and uncertain disturbance environments poses a formidable challenge to run-to-run (RtR) control. In this study, we propose an innovative approach for the online refinement of mul...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied intelligence (Dordrecht, Netherlands) Ročník 55; číslo 10; s. 732
Hlavní autori: Ma, Zhu, Chen, Yonglin, Pan, Tianhong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer Nature B.V 01.06.2025
Predmet:
ISSN:0924-669X, 1573-7497
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Achieving accurate target tracking in semiconductor manufacturing processes with complex nonlinearities, strong coupling, and uncertain disturbance environments poses a formidable challenge to run-to-run (RtR) control. In this study, we propose an innovative approach for the online refinement of multi-input multi-output double exponentially weighted moving average (dEWMA) controllers by applying deep reinforcement learning (DRL) techniques. This method harnesses the dynamic interaction capabilities of DRL with the operational environment, facilitating the adaptive tuning of dEWMA parameters to improve the control performance. To further enhance the learning efficiency of the DRL agent, a lightweight DRL model is proposed by combining the structural control network (SCN) with the twin-delayed deep deterministic policy gradient (TD3) algorithm. The SCN component improves the control efficiency by partitioning the policy network into linear and nonlinear modules, enabling the extraction of both local and global features for more effective control. Accordingly, a composite control strategy that synergizes SCN-TD3 with dEWMA is developed. The effectiveness and superiority of the proposed method are rigorously validated through comprehensive comparisons over various disturbance scenarios in both linear and nonlinear chemical mechanical polishing processes. These findings highlight the potential of the proposed DRL-based approach for intelligent RtR control and contribute to yield improvement in semiconductor manufacturing.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-025-06615-x