Geometric Duality in Multiple Objective Linear Programming

We develop in this article a geometric approach to duality in multiple objective linear programming. This approach is based on a very old idea, the duality of polytopes, which can be traced back to the old Greeks. We show that there is an inclusion-reversing one-to-one map between the minimal faces...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on optimization Ročník 19; číslo 2; s. 836 - 845
Hlavní autoři: Heyde, Frank, Löhne, Andreas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2008
Témata:
ISSN:1052-6234, 1095-7189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We develop in this article a geometric approach to duality in multiple objective linear programming. This approach is based on a very old idea, the duality of polytopes, which can be traced back to the old Greeks. We show that there is an inclusion-reversing one-to-one map between the minimal faces of the image of the primal objective and the maximal faces of the image of the dual objective map.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:1052-6234
1095-7189
DOI:10.1137/060674831