Geometric Duality in Multiple Objective Linear Programming
We develop in this article a geometric approach to duality in multiple objective linear programming. This approach is based on a very old idea, the duality of polytopes, which can be traced back to the old Greeks. We show that there is an inclusion-reversing one-to-one map between the minimal faces...
Uložené v:
| Vydané v: | SIAM journal on optimization Ročník 19; číslo 2; s. 836 - 845 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2008
|
| Predmet: | |
| ISSN: | 1052-6234, 1095-7189 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We develop in this article a geometric approach to duality in multiple objective linear programming. This approach is based on a very old idea, the duality of polytopes, which can be traced back to the old Greeks. We show that there is an inclusion-reversing one-to-one map between the minimal faces of the image of the primal objective and the maximal faces of the image of the dual objective map. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 1052-6234 1095-7189 |
| DOI: | 10.1137/060674831 |