Trade-offs inside the black box of neoantigen prediction
Success of precision neoantigen-based immunotherapies hinges on the selection of immunogenic neoantigens, yet currently neither large-scale datasets nor streamlined methods are available to achieve this goal. Müller et al. present a large experimental dataset resource along with machine learning-bas...
Uloženo v:
| Vydáno v: | Immunity (Cambridge, Mass.) Ročník 56; číslo 11; s. 2466 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
14.11.2023
|
| Témata: | |
| ISSN: | 1097-4180, 1097-4180 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Success of precision neoantigen-based immunotherapies hinges on the selection of immunogenic neoantigens, yet currently neither large-scale datasets nor streamlined methods are available to achieve this goal. Müller et al. present a large experimental dataset resource along with machine learning-based models to classify immunogenic neoantigens. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1097-4180 1097-4180 |
| DOI: | 10.1016/j.immuni.2023.10.011 |