A First-Order Convergence Analysis of Trust-Region Methods with Inexact Jacobians

A class of trust-region sequential quadratic programming algorithms for the solution of minimization problems with nonlinear equality constraints is analyzed. The considered class of optimization methods does not require the exact evaluation of the constraint Jacobian in each optimization step but u...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on optimization Ročník 19; číslo 1; s. 307 - 325
Hlavní autor: Walther, Andrea
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2008
Témata:
ISSN:1052-6234, 1095-7189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A class of trust-region sequential quadratic programming algorithms for the solution of minimization problems with nonlinear equality constraints is analyzed. The considered class of optimization methods does not require the exact evaluation of the constraint Jacobian in each optimization step but uses only an approximation of this first-order derivative information. Hence, the presented approach is especially well suited for equality constrained optimization problems where the Jacobian of the constraints is dense. The accuracy requirements for the presented first-order global convergence result are based on the feasibility and the optimality of the iterates. The corresponding criteria can be verified easily during the optimization process to adjust the approximation quality of the constraint Jacobian.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:1052-6234
1095-7189
DOI:10.1137/050634530