Differential dynamic programming for finite‐horizon zero‐sum differential games of nonlinear systems

In this article, we present an iterative algorithm based on differential dynamic programming (DDP) for finite‐horizon two‐person zero‐sum differential games. The technique of DDP is used to expand the Hamilton–Jacobi–Isaacs (HJI) partial differential equation into higher‐order differential equations...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of robust and nonlinear control Ročník 33; číslo 18; s. 11062 - 11084
Hlavní autoři: Zhang, Bin, Jia, Yingmin, Zhang, Yuqi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bognor Regis Wiley Subscription Services, Inc 01.12.2023
Témata:
ISSN:1049-8923, 1099-1239
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, we present an iterative algorithm based on differential dynamic programming (DDP) for finite‐horizon two‐person zero‐sum differential games. The technique of DDP is used to expand the Hamilton–Jacobi–Isaacs (HJI) partial differential equation into higher‐order differential equations. Using value function and saddle point approximations, the DDP expansion is transformed into algebraic matrix equation in integral form. Based on the algebraic matrix equation, a DDP iterative algorithm is developed to learn the solution to the differential games. Strict proof is proposed to guarantee the iterative convergences of the value function and saddle point. The new algorithm is fundamentally different from existing results, in the sense that it overcome the technical obstacle to address the time‐varying behavior of HJI partial differential equation. Simulation examples are given to demonstrate the effectiveness of the proposed method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1049-8923
1099-1239
DOI:10.1002/rnc.6932