Network-based characterization of time series and its application to signal classification

Time series analysis in complex systems can help us to peep into the inner structure and operation law of the system so as to make relevant decisions. In this paper, we propose a binary symbolic pattern state transfer network for measuring the complexity of series. First, we capture the spatio-tempo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos, solitons and fractals Jg. 201; S. 117300
Hauptverfasser: Mi, Yujia, Lin, Aijing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2025
Schlagworte:
ISSN:0960-0779
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Time series analysis in complex systems can help us to peep into the inner structure and operation law of the system so as to make relevant decisions. In this paper, we propose a binary symbolic pattern state transfer network for measuring the complexity of series. First, we capture the spatio-temporal characteristics of series through a weighted change pattern matrix, and then we define a new binary coding mode that accomplishes the conversion of complex series to symbolic series. In addition, we fully consider the temporal evolution of the series, construct a horizontal viewable view of the state transfer series and generate a complex network, and extract the relevant metrics. Simulation experiments verify the validity of the model and its robustness to parameters. Finally, the model is applied to physiological signal analysis. For two EEG datasets, we depicted the brain region activities of the subjects in different states and successfully categorized the subjects. In summary, our approach captures the intrinsic patterns and features of series from a new perspective and provides an effective way to measure the complexity of series, it also provides an effective way to recognize and classify complex signals. •A new metric for measuring the complexity of time series is proposed.•The global properties of complex series are comprehensively considered.•A new binary coding method is proposed to encode sequences symbolically.•Considers the evolution of sequence states over time and construct the network.•The constructed metrics are can classify real-world data effectively.
AbstractList Time series analysis in complex systems can help us to peep into the inner structure and operation law of the system so as to make relevant decisions. In this paper, we propose a binary symbolic pattern state transfer network for measuring the complexity of series. First, we capture the spatio-temporal characteristics of series through a weighted change pattern matrix, and then we define a new binary coding mode that accomplishes the conversion of complex series to symbolic series. In addition, we fully consider the temporal evolution of the series, construct a horizontal viewable view of the state transfer series and generate a complex network, and extract the relevant metrics. Simulation experiments verify the validity of the model and its robustness to parameters. Finally, the model is applied to physiological signal analysis. For two EEG datasets, we depicted the brain region activities of the subjects in different states and successfully categorized the subjects. In summary, our approach captures the intrinsic patterns and features of series from a new perspective and provides an effective way to measure the complexity of series, it also provides an effective way to recognize and classify complex signals. •A new metric for measuring the complexity of time series is proposed.•The global properties of complex series are comprehensively considered.•A new binary coding method is proposed to encode sequences symbolically.•Considers the evolution of sequence states over time and construct the network.•The constructed metrics are can classify real-world data effectively.
ArticleNumber 117300
Author Mi, Yujia
Lin, Aijing
Author_xml – sequence: 1
  givenname: Yujia
  surname: Mi
  fullname: Mi, Yujia
  email: 23111518@bjtu.edu.cn
– sequence: 2
  givenname: Aijing
  orcidid: 0000-0002-1088-7296
  surname: Lin
  fullname: Lin, Aijing
  email: ajlin@bjtu.edu.cn
BookMark eNp9kD1PwzAQhj0UibbwC1j8BxLOTh3HAwOq-JIqWGBhsZyzAy5pXNkWCH49KenM9Ep395xePQsyG8LgCLlgUDJg9eW2xHcTUsmBi5IxWQHMyBxUDQVIqU7JIqUtADCo-Zy8Prr8FeJH0ZrkLB3RaDC76H9M9mGgoaPZ7xxN48glagZLfR5zv-89Tic50OTfBtNT7E1KvjsuzshJZ_rkzo-5JC-3N8_r-2LzdPewvt4UyIXIhW2g4WNZK2S3QlCtWbWICmsFljNVtYp3NZrKSiUMWgsta4RFzutKilaaakmq6S_GkFJ0nd5HvzPxWzPQByV6q_-U6IMSPSkZqauJcmO1T--iTujdgM766DBrG_y__C_773Cy
Cites_doi 10.1016/j.physleta.2004.07.066
10.23919/JCC.ea.2022-0180.202401
10.1016/j.eswa.2022.119227
10.1103/PhysRevE.80.046103
10.1103/PhysRevE.72.046220
10.1007/s11071-021-07059-x
10.1016/S0076-6879(04)84011-4
10.1016/j.physrep.2006.11.001
10.1063/1.166092
10.1016/j.chaos.2023.114436
10.1016/j.patcog.2023.110075
10.1063/5.0142230
10.1063/5.0048243
10.1016/j.patcog.2023.110121
10.1098/rsta.2016.0292
10.1007/s11071-023-08776-1
10.1016/j.jmsy.2020.05.004
10.1016/j.patcog.2024.110486
10.1016/j.bspc.2020.101951
10.1016/j.patcog.2009.08.015
10.1103/PhysRevLett.88.174102
10.1103/PhysRevE.71.021906
10.1109/LSP.2015.2482603
10.1063/1.5086527
10.1109/TBME.2017.2664105
10.1016/j.ymssp.2020.107182
10.1109/TIT.2022.3143764
10.1016/j.compbiomed.2021.105120
10.3390/e21060541
10.1073/pnas.0709247105
10.1016/j.physa.2013.07.075
10.1038/srep35622
10.1109/JIOT.2024.3440332
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2025.117300
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
ExternalDocumentID 10_1016_j_chaos_2025_117300
S096007792501313X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c255t-d8082202d57f4c09ba4bcc9c690d2193b92f6ca3d795acdd0b185dc226375b7a3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001591529800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-0779
IngestDate Sat Nov 29 06:53:02 EST 2025
Wed Dec 10 14:26:10 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Horizontal visibility graph
Signal recognition and classification
Time series complexity
Phase space reconstruction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-d8082202d57f4c09ba4bcc9c690d2193b92f6ca3d795acdd0b185dc226375b7a3
ORCID 0000-0002-1088-7296
ParticipantIDs crossref_primary_10_1016_j_chaos_2025_117300
elsevier_sciencedirect_doi_10_1016_j_chaos_2025_117300
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Wang, Deng (b1) 2021; 61
Romano, Thiel, Kurths, von Bloh (b22) 2004; 330
Groth (b21) 2005; 72
McCullough, Small, Iu, Stemler (b25) 2017; 375
Li, Jiao, Zhu, Li (b32) 2023; 111
Baldán, Benítez (b31) 2023; 213
Ruan, Donner, Guan, Zou (b26) 2019; 29
Xiaochuan, Difei, Biao, Zhigang, Yingqi (b24) 2024
Delgado-Bonal, Marshak (b6) 2019; 21
Bandt, Pompe (b7) 2002; 88
Chen, Han, Chen, Guo (b2) 2017; 7
Costa, Goldberger, Peng (b9) 2005; 71
Wu, Wu, Lee, Lin (b10) 2013; 392
Younis, Hakmeh, Ahmadi (b34) 2024; 152
Motie Nasrabadi, Allahverdy, Samavati, Mohammadi (b35) 2020
Alakus, Gonen, Turkoglu (b36) 2020; 60
Digulescu, Murgan, Ioana, Candel, Serbanescu (b23) 2016
Richman, Lake, Moorman (b5) 2004; Vol. 384
Lacasa, Luque, Ballesteros, Luque, Nuno (b16) 2008; 105
Mbouopda, Mephu Nguifo (b33) 2024; 147
Mazuelas, Shen, Pérez (b14) 2022; 68
Cardoso-Pereira, Borges, Barros, Loureiro, Rosso, Ramos (b29) 2022; 107
Pincus (b4) 1995; 5
Hao, Sun, Li, Huang (b27) 2024
Humeau-Heurtier, Wu, Wu (b13) 2015; 22
Iaconis, Jiménez, Gasaneo, Rosso, Delrieux (b28) 2023; 33
Xuan, Zhou, Qiu, Xu, Zheng, Yang (b20) 2022; 32
Sun, Li, Song, Cai, Zhang, Hong (b3) 2024; 147
Marwan, Romano, Thiel, Kurths (b17) 2007; 438
Li, Tang, Jiao, Zhou (b11) 2024; 179
Gao, Cai, Yang, Dang, Zhang (b19) 2016; 6
Koh, Ooi, Lim-Ashworth, Vicnesh, Tor, Lih, Tan, Acharya, Fung (b15) 2022; 140
Pham (b30) 2010; 43
Manis, Aktaruzzaman, Sassi (b8) 2017; 64
Luque, Lacasa, Ballesteros, Luque (b18) 2009; 80
Yang, Jia (b12) 2021; 149
Koh (10.1016/j.chaos.2025.117300_b15) 2022; 140
Manis (10.1016/j.chaos.2025.117300_b8) 2017; 64
Cardoso-Pereira (10.1016/j.chaos.2025.117300_b29) 2022; 107
Pham (10.1016/j.chaos.2025.117300_b30) 2010; 43
Yang (10.1016/j.chaos.2025.117300_b12) 2021; 149
Lacasa (10.1016/j.chaos.2025.117300_b16) 2008; 105
McCullough (10.1016/j.chaos.2025.117300_b25) 2017; 375
Gao (10.1016/j.chaos.2025.117300_b19) 2016; 6
Delgado-Bonal (10.1016/j.chaos.2025.117300_b6) 2019; 21
Mazuelas (10.1016/j.chaos.2025.117300_b14) 2022; 68
Xuan (10.1016/j.chaos.2025.117300_b20) 2022; 32
Baldán (10.1016/j.chaos.2025.117300_b31) 2023; 213
Iaconis (10.1016/j.chaos.2025.117300_b28) 2023; 33
Younis (10.1016/j.chaos.2025.117300_b34) 2024; 152
Costa (10.1016/j.chaos.2025.117300_b9) 2005; 71
Motie Nasrabadi (10.1016/j.chaos.2025.117300_b35) 2020
Pincus (10.1016/j.chaos.2025.117300_b4) 1995; 5
Alakus (10.1016/j.chaos.2025.117300_b36) 2020; 60
Richman (10.1016/j.chaos.2025.117300_b5) 2004; Vol. 384
Chen (10.1016/j.chaos.2025.117300_b2) 2017; 7
Ruan (10.1016/j.chaos.2025.117300_b26) 2019; 29
Xiaochuan (10.1016/j.chaos.2025.117300_b24) 2024
Groth (10.1016/j.chaos.2025.117300_b21) 2005; 72
Romano (10.1016/j.chaos.2025.117300_b22) 2004; 330
Humeau-Heurtier (10.1016/j.chaos.2025.117300_b13) 2015; 22
Digulescu (10.1016/j.chaos.2025.117300_b23) 2016
Bandt (10.1016/j.chaos.2025.117300_b7) 2002; 88
Wu (10.1016/j.chaos.2025.117300_b10) 2013; 392
Li (10.1016/j.chaos.2025.117300_b32) 2023; 111
Mbouopda (10.1016/j.chaos.2025.117300_b33) 2024; 147
Sun (10.1016/j.chaos.2025.117300_b3) 2024; 147
Luque (10.1016/j.chaos.2025.117300_b18) 2009; 80
Li (10.1016/j.chaos.2025.117300_b1) 2021; 61
Li (10.1016/j.chaos.2025.117300_b11) 2024; 179
Marwan (10.1016/j.chaos.2025.117300_b17) 2007; 438
Hao (10.1016/j.chaos.2025.117300_b27) 2024
References_xml – volume: 80
  year: 2009
  ident: b18
  article-title: Horizontal visibility graphs: Exact results for random time series
  publication-title: Phys Rev E
– volume: 147
  year: 2024
  ident: b33
  article-title: Scalable and accurate subsequence transform for time series classification
  publication-title: Pattern Recognit
– start-page: 19
  year: 2016
  end-page: 38
  ident: b23
  article-title: Applications of transient signal analysis using the concept of recurrence plot analysis
  publication-title: Recurrence plots and their quantifications: expanding horizons: proceedings of the 6th international symposium on recurrence plots, Grenoble, France, 17-19 June 2015
– volume: 33
  year: 2023
  ident: b28
  article-title: Ordinal pattern transition networks in eye tracking reading signals
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
– volume: 43
  start-page: 887
  year: 2010
  end-page: 896
  ident: b30
  article-title: GeoEntropy: A measure of complexity and similarity
  publication-title: Pattern Recognit
– year: 2020
  ident: b35
  article-title: EEG data for ADHD / control children
– volume: 21
  start-page: 541
  year: 2019
  ident: b6
  article-title: Approximate entropy and sample entropy: A comprehensive tutorial
  publication-title: Entropy
– year: 2024
  ident: b27
  article-title: Detecting tendency behavior of cellular network traffic via ordinal pattern transition networks
  publication-title: IEEE Internet Things J
– volume: 152
  year: 2024
  ident: b34
  article-title: MTS2graph: Interpretable multivariate time series classification with temporal evolving graphs
  publication-title: Pattern Recognit
– volume: 68
  start-page: 2530
  year: 2022
  end-page: 2550
  ident: b14
  article-title: Generalized maximum entropy for supervised classification
  publication-title: IEEE Trans Inform Theory
– volume: 140
  year: 2022
  ident: b15
  article-title: Automated classification of attention deficit hyperactivity disorder and conduct disorder using entropy features with ECG signals
  publication-title: Comput Biol Med
– volume: 375
  year: 2017
  ident: b25
  article-title: Multiscale ordinal network analysis of human cardiac dynamics
  publication-title: Philos Trans R Soc A: Math, Phys Eng Sci
– volume: Vol. 384
  start-page: 172
  year: 2004
  end-page: 184
  ident: b5
  article-title: Sample entropy
  publication-title: Methods in enzymology
– volume: 107
  start-page: 889
  year: 2022
  end-page: 908
  ident: b29
  article-title: Leveraging the self-transition probability of ordinal patterns transition network for transportation mode identification based on GPS data
  publication-title: Nonlinear Dynam
– volume: 392
  start-page: 5865
  year: 2013
  end-page: 5873
  ident: b10
  article-title: Modified multiscale entropy for short-term time series analysis
  publication-title: Phys A
– volume: 88
  year: 2002
  ident: b7
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Phys Rev Lett
– volume: 32
  year: 2022
  ident: b20
  article-title: CLPVG: Circular limited penetrable visibility graph as a new network model for time series
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
– volume: 64
  start-page: 2711
  year: 2017
  end-page: 2718
  ident: b8
  article-title: Bubble entropy: An entropy almost free of parameters
  publication-title: IEEE Trans Biomed Eng
– volume: 5
  start-page: 110
  year: 1995
  end-page: 117
  ident: b4
  article-title: Approximate entropy (ApEn) as a complexity measure
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
– volume: 105
  start-page: 4972
  year: 2008
  end-page: 4975
  ident: b16
  article-title: From time series to complex networks: The visibility graph
  publication-title: Proc Natl Acad Sci
– volume: 72
  year: 2005
  ident: b21
  article-title: Visualization of coupling in time series by order recurrence plots
  publication-title: Phys Rev E
– volume: 330
  start-page: 214
  year: 2004
  end-page: 223
  ident: b22
  article-title: Multivariate recurrence plots
  publication-title: Phys Lett A
– volume: 213
  year: 2023
  ident: b31
  article-title: Complexity measures and features for times series classification
  publication-title: Expert Syst Appl
– year: 2024
  ident: b24
  article-title: Investigating optical transport network performance: A recurrence plot approach
  publication-title: China Commun
– volume: 71
  year: 2005
  ident: b9
  article-title: Multiscale entropy analysis of biological signals
  publication-title: Phys Rev E
– volume: 149
  year: 2021
  ident: b12
  article-title: Hierarchical multiscale permutation entropy-based feature extraction and fuzzy support tensor machine with pinball loss for bearing fault identification
  publication-title: Mech Syst Signal Process
– volume: 6
  start-page: 35622
  year: 2016
  ident: b19
  article-title: Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series
  publication-title: Sci Rep
– volume: 111
  start-page: 17299
  year: 2023
  end-page: 17316
  ident: b32
  article-title: Three-dimensional causal complementary complexity: a new measure for time series complexity analysis
  publication-title: Nonlinear Dynam
– volume: 60
  year: 2020
  ident: b36
  article-title: Database for an emotion recognition system based on EEG signals and various computer games–GAMEEMO
  publication-title: Biomed Signal Process Control
– volume: 7
  start-page: 203
  year: 2017
  end-page: 210
  ident: b2
  article-title: Novel algorithm for measuring the complexity of electroencephalographic signals in emotion recognition
  publication-title: J Med Imaging Heal Inform
– volume: 147
  year: 2024
  ident: b3
  article-title: Time pattern reconstruction for classification of irregularly sampled time series
  publication-title: Pattern Recognit
– volume: 22
  start-page: 2364
  year: 2015
  end-page: 2367
  ident: b13
  article-title: Refined composite multiscale permutation entropy to overcome multiscale permutation entropy length dependence
  publication-title: IEEE Signal Process Lett
– volume: 29
  year: 2019
  ident: b26
  article-title: Ordinal partition transition network based complexity measures for inferring coupling direction and delay from time series
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
– volume: 61
  start-page: 725
  year: 2021
  end-page: 735
  ident: b1
  article-title: Intelligent fault identification of rotary machinery using refined composite multi-scale Lempel–Ziv complexity
  publication-title: J Manuf Syst
– volume: 179
  year: 2024
  ident: b11
  article-title: Optimized multivariate multiscale slope entropy for nonlinear dynamic analysis of mechanical signals
  publication-title: Chaos Solitons Fractals
– volume: 438
  start-page: 237
  year: 2007
  end-page: 329
  ident: b17
  article-title: Recurrence plots for the analysis of complex systems
  publication-title: Phys Rep
– volume: 330
  start-page: 214
  issue: 3–4
  year: 2004
  ident: 10.1016/j.chaos.2025.117300_b22
  article-title: Multivariate recurrence plots
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2004.07.066
– year: 2024
  ident: 10.1016/j.chaos.2025.117300_b24
  article-title: Investigating optical transport network performance: A recurrence plot approach
  publication-title: China Commun
  doi: 10.23919/JCC.ea.2022-0180.202401
– volume: 213
  year: 2023
  ident: 10.1016/j.chaos.2025.117300_b31
  article-title: Complexity measures and features for times series classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119227
– volume: 80
  issue: 4
  year: 2009
  ident: 10.1016/j.chaos.2025.117300_b18
  article-title: Horizontal visibility graphs: Exact results for random time series
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.80.046103
– volume: 72
  issue: 4
  year: 2005
  ident: 10.1016/j.chaos.2025.117300_b21
  article-title: Visualization of coupling in time series by order recurrence plots
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.72.046220
– volume: 107
  start-page: 889
  issue: 1
  year: 2022
  ident: 10.1016/j.chaos.2025.117300_b29
  article-title: Leveraging the self-transition probability of ordinal patterns transition network for transportation mode identification based on GPS data
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-021-07059-x
– volume: Vol. 384
  start-page: 172
  year: 2004
  ident: 10.1016/j.chaos.2025.117300_b5
  article-title: Sample entropy
  doi: 10.1016/S0076-6879(04)84011-4
– volume: 438
  start-page: 237
  issue: 5–6
  year: 2007
  ident: 10.1016/j.chaos.2025.117300_b17
  article-title: Recurrence plots for the analysis of complex systems
  publication-title: Phys Rep
  doi: 10.1016/j.physrep.2006.11.001
– volume: 5
  start-page: 110
  issue: 1
  year: 1995
  ident: 10.1016/j.chaos.2025.117300_b4
  article-title: Approximate entropy (ApEn) as a complexity measure
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
  doi: 10.1063/1.166092
– volume: 179
  year: 2024
  ident: 10.1016/j.chaos.2025.117300_b11
  article-title: Optimized multivariate multiscale slope entropy for nonlinear dynamic analysis of mechanical signals
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2023.114436
– volume: 147
  year: 2024
  ident: 10.1016/j.chaos.2025.117300_b3
  article-title: Time pattern reconstruction for classification of irregularly sampled time series
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2023.110075
– volume: 33
  issue: 5
  year: 2023
  ident: 10.1016/j.chaos.2025.117300_b28
  article-title: Ordinal pattern transition networks in eye tracking reading signals
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
  doi: 10.1063/5.0142230
– volume: 7
  start-page: 203
  issue: 1
  year: 2017
  ident: 10.1016/j.chaos.2025.117300_b2
  article-title: Novel algorithm for measuring the complexity of electroencephalographic signals in emotion recognition
  publication-title: J Med Imaging Heal Inform
– volume: 32
  issue: 1
  year: 2022
  ident: 10.1016/j.chaos.2025.117300_b20
  article-title: CLPVG: Circular limited penetrable visibility graph as a new network model for time series
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
  doi: 10.1063/5.0048243
– year: 2020
  ident: 10.1016/j.chaos.2025.117300_b35
– volume: 147
  year: 2024
  ident: 10.1016/j.chaos.2025.117300_b33
  article-title: Scalable and accurate subsequence transform for time series classification
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2023.110121
– volume: 375
  issue: 2096
  year: 2017
  ident: 10.1016/j.chaos.2025.117300_b25
  article-title: Multiscale ordinal network analysis of human cardiac dynamics
  publication-title: Philos Trans R Soc A: Math, Phys Eng Sci
  doi: 10.1098/rsta.2016.0292
– volume: 111
  start-page: 17299
  issue: 18
  year: 2023
  ident: 10.1016/j.chaos.2025.117300_b32
  article-title: Three-dimensional causal complementary complexity: a new measure for time series complexity analysis
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-023-08776-1
– volume: 61
  start-page: 725
  year: 2021
  ident: 10.1016/j.chaos.2025.117300_b1
  article-title: Intelligent fault identification of rotary machinery using refined composite multi-scale Lempel–Ziv complexity
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.05.004
– volume: 152
  year: 2024
  ident: 10.1016/j.chaos.2025.117300_b34
  article-title: MTS2graph: Interpretable multivariate time series classification with temporal evolving graphs
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2024.110486
– volume: 60
  year: 2020
  ident: 10.1016/j.chaos.2025.117300_b36
  article-title: Database for an emotion recognition system based on EEG signals and various computer games–GAMEEMO
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.101951
– volume: 43
  start-page: 887
  issue: 3
  year: 2010
  ident: 10.1016/j.chaos.2025.117300_b30
  article-title: GeoEntropy: A measure of complexity and similarity
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2009.08.015
– volume: 88
  issue: 17
  year: 2002
  ident: 10.1016/j.chaos.2025.117300_b7
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.88.174102
– volume: 71
  issue: 2
  year: 2005
  ident: 10.1016/j.chaos.2025.117300_b9
  article-title: Multiscale entropy analysis of biological signals
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.71.021906
– volume: 22
  start-page: 2364
  issue: 12
  year: 2015
  ident: 10.1016/j.chaos.2025.117300_b13
  article-title: Refined composite multiscale permutation entropy to overcome multiscale permutation entropy length dependence
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2015.2482603
– volume: 29
  issue: 4
  year: 2019
  ident: 10.1016/j.chaos.2025.117300_b26
  article-title: Ordinal partition transition network based complexity measures for inferring coupling direction and delay from time series
  publication-title: Chaos: An Interdiscip J Nonlinear Sci
  doi: 10.1063/1.5086527
– volume: 64
  start-page: 2711
  issue: 11
  year: 2017
  ident: 10.1016/j.chaos.2025.117300_b8
  article-title: Bubble entropy: An entropy almost free of parameters
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2017.2664105
– volume: 149
  year: 2021
  ident: 10.1016/j.chaos.2025.117300_b12
  article-title: Hierarchical multiscale permutation entropy-based feature extraction and fuzzy support tensor machine with pinball loss for bearing fault identification
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107182
– volume: 68
  start-page: 2530
  issue: 4
  year: 2022
  ident: 10.1016/j.chaos.2025.117300_b14
  article-title: Generalized maximum entropy for supervised classification
  publication-title: IEEE Trans Inform Theory
  doi: 10.1109/TIT.2022.3143764
– volume: 140
  year: 2022
  ident: 10.1016/j.chaos.2025.117300_b15
  article-title: Automated classification of attention deficit hyperactivity disorder and conduct disorder using entropy features with ECG signals
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105120
– volume: 21
  start-page: 541
  issue: 6
  year: 2019
  ident: 10.1016/j.chaos.2025.117300_b6
  article-title: Approximate entropy and sample entropy: A comprehensive tutorial
  publication-title: Entropy
  doi: 10.3390/e21060541
– volume: 105
  start-page: 4972
  issue: 13
  year: 2008
  ident: 10.1016/j.chaos.2025.117300_b16
  article-title: From time series to complex networks: The visibility graph
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0709247105
– volume: 392
  start-page: 5865
  issue: 23
  year: 2013
  ident: 10.1016/j.chaos.2025.117300_b10
  article-title: Modified multiscale entropy for short-term time series analysis
  publication-title: Phys A
  doi: 10.1016/j.physa.2013.07.075
– volume: 6
  start-page: 35622
  issue: 1
  year: 2016
  ident: 10.1016/j.chaos.2025.117300_b19
  article-title: Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series
  publication-title: Sci Rep
  doi: 10.1038/srep35622
– start-page: 19
  year: 2016
  ident: 10.1016/j.chaos.2025.117300_b23
  article-title: Applications of transient signal analysis using the concept of recurrence plot analysis
– year: 2024
  ident: 10.1016/j.chaos.2025.117300_b27
  article-title: Detecting tendency behavior of cellular network traffic via ordinal pattern transition networks
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2024.3440332
SSID ssj0001062
Score 2.472491
Snippet Time series analysis in complex systems can help us to peep into the inner structure and operation law of the system so as to make relevant decisions. In this...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 117300
SubjectTerms Horizontal visibility graph
Phase space reconstruction
Signal recognition and classification
Time series complexity
Title Network-based characterization of time series and its application to signal classification
URI https://dx.doi.org/10.1016/j.chaos.2025.117300
Volume 201
WOSCitedRecordID wos001591529800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0960-0779
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001062
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA669UEfiq2K1Vby4IOiKdm5ZfJYSkXFLoIVVl-GXOkuMls6Wyn-es-ZZLLbVkQFX8IwkAvnCzlfki_nEPI8E-CHhPTM-kKyQnnHpBaOaWmKSnvphPB9sgkxmdTTqfwYE4x3fToB0bb15aU8-69Qwz8AG5_O_gXcqVH4Ad8AOpQAO5R_BPwkCLsZ-ieLD3tjQOYfiRxiPvlXOBbXpbuDtYtspKMo68DIIcitUUy0wm-IanCqgkCvQwEd6m2wJY99qW-Jpx_3WoEvF_NZWv0_xKAFs_ngNOOZQ1Ze02-kxzAr5VF_olhxxkXIDTMsrlmodmOhDmcG832Do93HPvD6OOd85ZeSWvATtowNA10b5-N8eptsZKKU9YhsHLw7mr5Prhf2t_210TCSIcxUL-i70dWvqcgavTi5TzbjvoAeBDy3yC3XbpN7xymobrdNtuI63NEXMVj4ywfk6xW46XW46cJThJsGuCmARAFuugY3XS5ogJtehfsh-fzm6OTwLYv5MpiBjeGS2RrD9_PMlsIXhkutCm2MNJXkFhxTrmXmK6NyK2SpjLVcA1mzBgh4LkotVP6IjNpF6x4T6kzNvZKqyp0oYJuurdB6bGzhbakkL3bI68F0zVkIi9IMesF501u6QUs3wdI7pBrM20RmFxhbA_PhdxWf_GvFp-TuauLuktHy_MLtkTvm-3LWnT-L8-YnjyJ2zA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network-based+characterization+of+time+series+and+its+application+to+signal+classification&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Mi%2C+Yujia&rft.au=Lin%2C+Aijing&rft.date=2025-12-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.volume=201&rft_id=info:doi/10.1016%2Fj.chaos.2025.117300&rft.externalDocID=S096007792501313X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon