Reliability study of generalized exponential distribution based on inverse power law using artificial neural network with Bayesian regularization

The investigation of lifetime reliability analysis is vital for confirming the quality of devices, equipment, electronic tube flops, and so forth. Statistical investigators have become more interested in lifetime model exploration in recent years, particularly in the last decade, without considering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international Jg. 39; H. 6; S. 2398 - 2421
Hauptverfasser: Sindhu, Tabassum Naz, Çolak, Andaç Batur, Lone, Showkat Ahmad, Shafiq, Anum
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 01.10.2023
Schlagworte:
ISSN:0748-8017, 1099-1638
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The investigation of lifetime reliability analysis is vital for confirming the quality of devices, equipment, electronic tube flops, and so forth. Statistical investigators have become more interested in lifetime model exploration in recent years, particularly in the last decade, without considering the issue of modeling the metrics of model reliability using artificial neural networks (ANNs). This study addresses this vacuum by discussing the multilayer ANN with Bayesian regularization modeling for reliability metrics of generalized exponential model based on inverse power law (IPL). The numerical findings of the reliability investigations and the values obtained from the ANN have been examined and analyzed carefully. The findings show that ANNs are a powerful and useful mathematical tool for analyzing the reliability of lifetime model based on IPL. Finally, a real life framework is implemented that support the theory of a research study.
AbstractList The investigation of lifetime reliability analysis is vital for confirming the quality of devices, equipment, electronic tube flops, and so forth. Statistical investigators have become more interested in lifetime model exploration in recent years, particularly in the last decade, without considering the issue of modeling the metrics of model reliability using artificial neural networks (ANNs). This study addresses this vacuum by discussing the multilayer ANN with Bayesian regularization modeling for reliability metrics of generalized exponential model based on inverse power law (IPL). The numerical findings of the reliability investigations and the values obtained from the ANN have been examined and analyzed carefully. The findings show that ANNs are a powerful and useful mathematical tool for analyzing the reliability of lifetime model based on IPL. Finally, a real life framework is implemented that support the theory of a research study.
The investigation of lifetime reliability analysis is vital for confirming the quality of devices, equipment, electronic tube flops, and so forth. Statistical investigators have become more interested in lifetime model exploration in recent years, particularly in the last decade, without considering the issue of modeling the metrics of model reliability using artificial neural networks (ANNs). This study addresses this vacuum by discussing the multilayer ANN with Bayesian regularization modeling for reliability metrics of generalized exponential model based on inverse power law (IPL). The numerical findings of the reliability investigations and the values obtained from the ANN have been examined and analyzed carefully. The findings show that ANNs are a powerful and useful mathematical tool for analyzing the reliability of lifetime model based on IPL. Finally, a real life framework is implemented that support the theory of a research study.
Author Çolak, Andaç Batur
Sindhu, Tabassum Naz
Lone, Showkat Ahmad
Shafiq, Anum
Author_xml – sequence: 1
  givenname: Tabassum Naz
  orcidid: 0000-0001-9433-4981
  surname: Sindhu
  fullname: Sindhu, Tabassum Naz
  organization: Department of Statistics Quaid‐i‐Azam University Islamabad Pakistan
– sequence: 2
  givenname: Andaç Batur
  orcidid: 0000-0001-9297-8134
  surname: Çolak
  fullname: Çolak, Andaç Batur
  organization: Information Technologies Application and Research Center Istanbul Ticaret University Istanbul Türkiye
– sequence: 3
  givenname: Showkat Ahmad
  surname: Lone
  fullname: Lone, Showkat Ahmad
  organization: Department of Basic Sciences College of Science and Theoretical Studies Saudi Electronic University Riyadh Kingdom of Saudi Arabia
– sequence: 4
  givenname: Anum
  orcidid: 0000-0001-7186-7216
  surname: Shafiq
  fullname: Shafiq, Anum
  organization: School of Mathematics and Statistics Nanjing University of Information Science and Technology Nanjing China
BookMark eNplUMtKxDAUDaLg-AA_IeDGTcckbfpY6uALBgTRdUnTZLxjTWduUsfxL_xjU3Wlq3PgnsflHJBd1ztDyAlnU86YOF-jmaapFDtkwllVJTxPy10yYUVWJiXjxT458H7JWBRX5YR8PpgOVAMdhC31YWi3tLd0YZxB1cGHaal5X8UGF0B1tAUfEJohQO9oo3w8RwLuzaA3dNVvDNJObejgwS2owgAW9Gh0ZsBvCJseX-gGwjO9VFvjQTmKZjF0CuFDjblHZM-qzpvjXzwkT9dXj7PbZH5_cze7mCdaSBmSVjaa8VaKNsslz0VRtVaJVjRKlpHK3BY6i1dVNkw3QmeVkJVttLCiEKlN00Ny-pO7wn49GB_qZT-gi5W1KHOelZVko2r6o9LYe4_G1hrC958BFXQ1Z_U4ex1nr8fZo-Hsj2GF8Kpw-1_6BdAjicc
CitedBy_id crossref_primary_10_1002_qre_3512
crossref_primary_10_1002_qre_3633
crossref_primary_10_1016_j_jrras_2024_100879
crossref_primary_10_1016_j_heliyon_2024_e28609
crossref_primary_10_3389_fenrg_2024_1335642
crossref_primary_10_1016_j_triboint_2023_109231
crossref_primary_10_1016_j_applthermaleng_2024_122757
crossref_primary_10_1016_j_cnsns_2025_108733
crossref_primary_10_1002_zamm_202400208
crossref_primary_10_1016_j_rineng_2024_103420
crossref_primary_10_1016_j_rineng_2025_107204
crossref_primary_10_1007_s44198_024_00196_y
crossref_primary_10_1016_j_rineng_2024_103233
crossref_primary_10_1016_j_applthermaleng_2025_128450
Cites_doi 10.1016/j.matdes.2018.05.049
10.1109/TIE.2009.2014306
10.1016/j.icheatmasstransfer.2016.03.008
10.1002/er.5680
10.3390/math8020160
10.1016/j.oceaneng.2021.108793
10.1081/STA-100107697
10.1016/j.jece.2020.104711
10.1002/fld.5038
10.1109/ACCESS.2020.3000951
10.1016/j.spmi.2021.106864
10.1016/j.neucom.2020.03.051
10.1016/j.rinp.2022.105613
10.1016/j.asoc.2021.107551
10.1016/j.jrmge.2019.04.006
10.1016/j.petrol.2015.01.002
10.1002/er.5417
10.1016/j.cjph.2022.04.004
10.1615/HeatTransRes.2020034724
10.1016/j.powtec.2019.05.034
10.1017/S0269964801151077
10.1016/j.jmaa.2009.08.029
10.1017/S0269964800005064
10.1137/0108051
10.1016/j.apacoust.2018.04.020
10.1002/qre.2214
10.1016/j.icheatmasstransfer.2017.02.003
10.1080/03610920902807895
10.1016/j.cma.2021.113976
10.1109/TR.2008.2006576
10.1002/mma.8178
10.3390/electronics8121412
10.1016/j.petrol.2011.03.002
10.1111/1467-842X.00072
10.1016/j.jspi.2007.03.030
10.1109/TR.2013.2255793
10.1016/j.jhydrol.2017.11.049
10.2307/3556181
10.1155/2019/8947905
10.1002/qre.2864
10.1016/j.powtec.2014.06.062
10.1615/HeatTransRes.2021041018
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1002/qre.3352
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1638
EndPage 2421
ExternalDocumentID 10_1002_qre_3352
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O8X
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
7TB
8FD
ALUQN
FR3
ID FETCH-LOGICAL-c255t-d5bc01d52d46516279dfa2d2ba589df56f7c452da8b0cb2c49259fbc2f2723f33
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000972508300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0748-8017
IngestDate Fri Jul 25 12:13:12 EDT 2025
Sat Nov 29 02:33:18 EST 2025
Tue Nov 18 22:11:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-d5bc01d52d46516279dfa2d2ba589df56f7c452da8b0cb2c49259fbc2f2723f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9297-8134
0000-0001-9433-4981
0000-0001-7186-7216
PQID 2861489503
PQPubID 1016437
PageCount 24
ParticipantIDs proquest_journals_2861489503
crossref_citationtrail_10_1002_qre_3352
crossref_primary_10_1002_qre_3352
PublicationCentury 2000
PublicationDate 2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-00
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Quality and reliability engineering international
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References Lyu MR (e_1_2_9_24_1) 1996
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
Ranjbar AH (e_1_2_9_34_1) 2009
Lawless JF (e_1_2_9_2_1) 1982
e_1_2_9_14_1
e_1_2_9_39_1
Meeker WQ (e_1_2_9_4_1) 2014
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
Zhang L (e_1_2_9_8_1) 2019; 2019
e_1_2_9_22_1
e_1_2_9_45_1
Bandemer H (e_1_2_9_5_1) 1978
e_1_2_9_43_1
e_1_2_9_6_1
Lee YK (e_1_2_9_30_1) 2008; 21
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Goel A (e_1_2_9_31_1) 2007
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_13_1
e_1_2_9_32_1
Huang X (e_1_2_9_7_1) 2014; 228
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
Martz HF (e_1_2_9_3_1) 1982
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_17_1
  doi: 10.1016/j.matdes.2018.05.049
– ident: e_1_2_9_33_1
  doi: 10.1109/TIE.2009.2014306
– ident: e_1_2_9_42_1
  doi: 10.1016/j.icheatmasstransfer.2016.03.008
– ident: e_1_2_9_43_1
  doi: 10.1002/er.5680
– ident: e_1_2_9_9_1
  doi: 10.3390/math8020160
– ident: e_1_2_9_45_1
  doi: 10.1016/j.oceaneng.2021.108793
– ident: e_1_2_9_28_1
  doi: 10.1081/STA-100107697
– ident: e_1_2_9_20_1
  doi: 10.1016/j.jece.2020.104711
– ident: e_1_2_9_50_1
  doi: 10.1002/fld.5038
– ident: e_1_2_9_11_1
  doi: 10.1109/ACCESS.2020.3000951
– ident: e_1_2_9_41_1
  doi: 10.1016/j.spmi.2021.106864
– ident: e_1_2_9_23_1
  doi: 10.1016/j.neucom.2020.03.051
– ident: e_1_2_9_48_1
  doi: 10.1016/j.rinp.2022.105613
– ident: e_1_2_9_21_1
  doi: 10.1016/j.asoc.2021.107551
– start-page: 253
  volume-title: Compatibility and Power Electronics
  year: 2009
  ident: e_1_2_9_34_1
– ident: e_1_2_9_47_1
  doi: 10.1016/j.jrmge.2019.04.006
– ident: e_1_2_9_22_1
  doi: 10.1016/j.petrol.2015.01.002
– ident: e_1_2_9_49_1
  doi: 10.1002/er.5417
– volume-title: Handbook of Software Reliability Engineering
  year: 1996
  ident: e_1_2_9_24_1
– ident: e_1_2_9_44_1
  doi: 10.1016/j.cjph.2022.04.004
– volume: 228
  start-page: 72
  issue: 1
  year: 2014
  ident: e_1_2_9_7_1
  article-title: A probability estimation method for reliability analysis using mapped Gegenbauer polynomials
  publication-title: Proc Inst Mech Eng O: J Risk Reliab
– ident: e_1_2_9_39_1
  doi: 10.1615/HeatTransRes.2020034724
– ident: e_1_2_9_16_1
  doi: 10.1016/j.powtec.2019.05.034
– ident: e_1_2_9_27_1
  doi: 10.1017/S0269964801151077
– ident: e_1_2_9_29_1
  doi: 10.1016/j.jmaa.2009.08.029
– ident: e_1_2_9_26_1
  doi: 10.1017/S0269964800005064
– ident: e_1_2_9_32_1
  doi: 10.1137/0108051
– ident: e_1_2_9_19_1
  doi: 10.1016/j.apacoust.2018.04.020
– volume-title: Statistical Models and Methods for Lifetime Data
  year: 1982
  ident: e_1_2_9_2_1
– ident: e_1_2_9_6_1
  doi: 10.1002/qre.2214
– ident: e_1_2_9_15_1
  doi: 10.1016/j.icheatmasstransfer.2017.02.003
– ident: e_1_2_9_35_1
  doi: 10.1080/03610920902807895
– ident: e_1_2_9_18_1
  doi: 10.1016/j.cma.2021.113976
– ident: e_1_2_9_36_1
  doi: 10.1109/TR.2008.2006576
– ident: e_1_2_9_52_1
  doi: 10.1002/mma.8178
– ident: e_1_2_9_10_1
  doi: 10.3390/electronics8121412
– volume-title: Statistical Methods for Reliability Data
  year: 2014
  ident: e_1_2_9_4_1
– volume-title: Statistical Analysis of Reliability and Life‐Testing Models: Theory and Methods. Statistics: Textbooks and Monographs
  year: 1978
  ident: e_1_2_9_5_1
– volume-title: A New Approach to Electronic Systems Reliability Assessment
  year: 2007
  ident: e_1_2_9_31_1
– ident: e_1_2_9_40_1
  doi: 10.1016/j.petrol.2011.03.002
– ident: e_1_2_9_13_1
  doi: 10.1111/1467-842X.00072
– start-page: 10158
  volume-title: Bayesian Reliability Analysis
  year: 1982
  ident: e_1_2_9_3_1
– ident: e_1_2_9_14_1
  doi: 10.1016/j.jspi.2007.03.030
– ident: e_1_2_9_37_1
  doi: 10.1109/TR.2013.2255793
– ident: e_1_2_9_46_1
  doi: 10.1016/j.jhydrol.2017.11.049
– ident: e_1_2_9_25_1
  doi: 10.2307/3556181
– volume: 2019
  year: 2019
  ident: e_1_2_9_8_1
  article-title: Reliability assessment for very few failure data and Weibull distribution
  publication-title: Math Probl Eng
  doi: 10.1155/2019/8947905
– volume: 21
  start-page: 573
  issue: 4
  year: 2008
  ident: e_1_2_9_30_1
  article-title: A study on the techniques of estimating the probability of failure
  publication-title: J Chungcheong Math Soc
– ident: e_1_2_9_12_1
  doi: 10.1002/qre.2864
– ident: e_1_2_9_38_1
  doi: 10.1016/j.powtec.2014.06.062
– ident: e_1_2_9_51_1
  doi: 10.1615/HeatTransRes.2021041018
SSID ssj0010098
Score 2.447262
Snippet The investigation of lifetime reliability analysis is vital for confirming the quality of devices, equipment, electronic tube flops, and so forth. Statistical...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2398
SubjectTerms Artificial neural networks
Bayesian analysis
Mathematical analysis
Multilayers
Power law
Probability distribution functions
Regularization
Reliability analysis
Title Reliability study of generalized exponential distribution based on inverse power law using artificial neural network with Bayesian regularization
URI https://www.proquest.com/docview/2861489503
Volume 39
WOSCitedRecordID wos000972508300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1638
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010098
  issn: 0748-8017
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2jgd4mPgUg4GMhOAhCrROUiePBTbxUBVEO6lvkWPHa0VJP9Zu3f4L_mPubOej0oTGAy-pm1iNk_vVdz7f_Y6Qt4JnohNq7nMWcj-UEfdB6XV8lmsV6CzIImFIXPt8MIjH4-T73v5hmQtzOeNFEW-3yeK_ihrOgbAxdfYfxF39KJyANggdjiB2ON5J8BhkbMm3ry15LNqD55ZdenoD9mW-XcwLDBKy-zNVySsPNZryTOwjBmvk3gJLqHkzceVtjEsB7-YYJ5AH03yYKHLrzv0krnOTk7kyBe5XLsWzaf9ayg7L-bRqDDSvaRENg0XlpKw9CzA6eI2gDm684bRQk03twVDC7PdzGAFoUA-_xBzW7FUW0nAyv_op1l5v8ksorz-vYwl6mAkwnAg9XTYdIKwOpbvrNNuYUnkYo062Kj63Uz5ylKJV2tQJlmDJYX9ngg9s0WxnLOCG-q2KyBLbLlf5B0xqq5VtGWAw-JaenvX76ehkPHq3WPpYBg3DBVxNmH1ywHiUxC1y8OUHdKw2xpD_1TLL2gcp-ZTb7GN5s10La9fAMFbT6CE5dMsd2rMwfUT28uIxedAgwXxCfjcASw1g6VzTBmBpA7C0CVhqAEuh4QBLDWApAJYawNIasNQCljrAUgQsLQFLdwH7lJydnow-f_VdoRBfwop47asok-2OipgKu1Gny3iitGCKZSKKoRl1NZchXBVx1pYZk0jImehMMs04C3QQPCOtAh7kOaGx1EFbqyhQYPhiICbDnfZIdqWWQZ4lR-R9-XJT6Vj0sZjLLLX83ywFMaQohiPypuq5sMwxt_Q5LuWTuinkImUxkvMmUTt48ffLL8n9-v9wTFrr1SZ_Re7Jy_X0YvXaIecP_93RVg
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+study+of+generalized+exponential+distribution+based+on+inverse+power+law+using+artificial+neural+network+with+Bayesian+regularization&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Tabassum+Naz+Sindhu&rft.au=Anda%C3%A7+Batur+%C3%87olak&rft.au=Showkat+Ahmad+Lone&rft.au=Anum+Shafiq&rft.date=2023-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0748-8017&rft.eissn=1099-1638&rft.volume=39&rft.issue=6&rft.spage=2398&rft.epage=2421&rft_id=info:doi/10.1002%2Fqre.3352&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon