Incremental value iteration for optimal output regulation of linear systems with unknown exosystems
This paper addresses the optimal output regulation problem for discrete-time linear systems with completely unknown dynamics and unmeasurable exosystem states. The primary objective is to design incremental dataset-based value iteration (VI) reinforcement learning algorithms to derive both state fee...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 626; s. 129579 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
14.04.2025
|
| Témata: | |
| ISSN: | 0925-2312 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper addresses the optimal output regulation problem for discrete-time linear systems with completely unknown dynamics and unmeasurable exosystem states. The primary objective is to design incremental dataset-based value iteration (VI) reinforcement learning algorithms to derive both state feedback and output feedback controllers. In the context of data-driven optimal control, existing approaches typically require either the exosystem state to be measurable or the design of an autonomous system to reconstruct it. In contrast, this work proposes an incremental dataset-based VI algorithm, which eliminates the need for exosystem state measurement or reconstruction. Additionally, the proposed method allows for the selection of an arbitrary initial admissible control policy, thereby overcoming the challenge of requiring an initial admissible control in policy iteration algorithms. Furthermore, the system state is reconstructed using the incremental dataset, and an optimal output feedback controller is developed based on the proposed VI algorithm. The theoretical convergence of the dataset-based incremental VI algorithm is rigorously analyzed, and comprehensive simulations are conducted to validate its effectiveness. |
|---|---|
| AbstractList | This paper addresses the optimal output regulation problem for discrete-time linear systems with completely unknown dynamics and unmeasurable exosystem states. The primary objective is to design incremental dataset-based value iteration (VI) reinforcement learning algorithms to derive both state feedback and output feedback controllers. In the context of data-driven optimal control, existing approaches typically require either the exosystem state to be measurable or the design of an autonomous system to reconstruct it. In contrast, this work proposes an incremental dataset-based VI algorithm, which eliminates the need for exosystem state measurement or reconstruction. Additionally, the proposed method allows for the selection of an arbitrary initial admissible control policy, thereby overcoming the challenge of requiring an initial admissible control in policy iteration algorithms. Furthermore, the system state is reconstructed using the incremental dataset, and an optimal output feedback controller is developed based on the proposed VI algorithm. The theoretical convergence of the dataset-based incremental VI algorithm is rigorously analyzed, and comprehensive simulations are conducted to validate its effectiveness. |
| ArticleNumber | 129579 |
| Author | Hao, Longyan Wang, Chaoli Liang, Dong Jing, Chonglin Xu, Yujing |
| Author_xml | – sequence: 1 givenname: Chonglin surname: Jing fullname: Jing, Chonglin organization: Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China – sequence: 2 givenname: Chaoli surname: Wang fullname: Wang, Chaoli email: clwang@usst.edu.cn organization: Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China – sequence: 3 givenname: Dong surname: Liang fullname: Liang, Dong organization: Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China – sequence: 4 givenname: Yujing surname: Xu fullname: Xu, Yujing organization: High-tech Institute, Fan Gong-ting South Street on the 12th, Weifang 261000, China – sequence: 5 givenname: Longyan surname: Hao fullname: Hao, Longyan organization: Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China |
| BookMark | eNp9kL1qwzAUhTWk0CTtG3TQC9iVFMu2lkIJ_QkEurSzkOWrVqktBUlOmrevgzNnunA_zuHwLdDMeQcIPVCSU0LLx13uYNC-zxlhPKdM8ErM0JwIxjO2ouwWLWLcEUKrkc2R3jgdoAeXVIcPqhsA2wRBJesdNj5gv0-2H5kf0n5IOMD30E3UG9xZByrgeIoJ-oiPNv3gwf06f3QY_vzlf4dujOoi3F_uEn29vnyu37Ptx9tm_bzNNOM8ZQ0UzJharQrTVFVdK6K0YILWpjQNI4LXuhWUN43g7QgoM7pWomibUpGStGq1RMXUq4OPMYCR-zBuDydJiTzLkTs5yZFnOXKSM8aephiM2w4WgozagtPQ2gA6ydbb6wX_uKF3JA |
| Cites_doi | 10.1016/j.neucom.2022.10.032 10.1109/TNSE.2021.3058220 10.1016/j.automatica.2019.108549 10.1109/TCYB.2018.2890046 10.1109/TAC.2019.2959999 10.1109/TIE.2023.3247734 10.1109/TAC.1976.1101138 10.1016/j.automatica.2021.110103 10.1109/TAC.2022.3228969 10.1109/TAC.2014.2368234 10.1002/rnc.6459 10.1109/TSMCB.2010.2043839 10.1016/j.automatica.2023.111468 10.1016/j.automatica.2012.06.096 10.1016/j.neucom.2020.04.140 10.1016/j.automatica.2012.03.007 10.1016/j.conengprac.2023.105675 10.1109/TAC.2007.904277 10.1109/TAC.2016.2548662 10.1016/j.automatica.2022.110761 10.1016/j.neucom.2018.05.111 10.1109/TIE.2022.3220886 10.1016/j.jfranklin.2020.12.008 10.1016/j.neucom.2024.127569 10.1080/00207721.2022.2085343 10.1016/j.automatica.2023.111030 10.1016/S1474-6670(17)67756-5 10.1016/j.automatica.2016.05.003 10.1016/j.automatica.2021.109687 10.1016/j.automatica.2011.03.005 10.1016/j.automatica.2024.111551 10.1016/j.automatica.2022.110366 10.1109/TAC.2022.3172590 10.1109/TAC.2021.3064829 10.1016/j.automatica.2022.110768 10.1109/TCST.2021.3099096 10.1109/TAC.2020.3010772 10.1109/TAC.2018.2799526 10.1080/0020717031000073054 10.1109/TAC.1971.1099755 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2025.129579 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_neucom_2025_129579 S0925231225002516 |
| GrantInformation_xml | – fundername: The National Natural Science Foundation of China grantid: 62173232; 61673277; 61503262 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYFN AAYWO ABBOA ABCQJ ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c255t-be42ff8a34fb7788a0ac92918f6fb20958cd915bb95dc9212fc8a94db6a060da3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001424849900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 07:57:07 EST 2025 Sat May 24 17:04:31 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Output regulation Incremental dataset Value iteration algorithm Optimal control |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c255t-be42ff8a34fb7788a0ac92918f6fb20958cd915bb95dc9212fc8a94db6a060da3 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2025_129579 elsevier_sciencedirect_doi_10_1016_j_neucom_2025_129579 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-14 |
| PublicationDateYYYYMMDD | 2025-04-14 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Cai, Wang, Liu, Chen, Wang (b28) 2022; 53 Gao, Jiang, Lewis, Wang (b10) 2018; 63 Jiang, Gao, Wu, Chai, Lewis (b31) 2023; 148 Li, Zou, Guo, Xiang (b12) 2023; 516 Zhang, Liu, Su (b17) 2024 Wu, Luo, Deng (b25) 2024; 585 Saberi, Stoorvogel, Sannuti, Shi (b15) 2003; 76 Xu, Jagannathan, Lewis (b47) 2012; 48 Zhang, Zhang (b16) 2021; 358 Liang, Huang (b5) 2021; 66 Li, Xue, Sun (b8) 2018; 314 Luo, Wang, Chen, Yi (b37) 2021; 8 Krener (b14) 1992 Adib Yaghmaie, Gunnarsson, Lewis (b21) 2019; 110 Zhao, Yang, Gao, Zhou (b33) 2023; 70 Qasem, Davari, Gao, Kirk, Chai (b36) 2024; 71 Zhao, Yang, Gao, Park (b40) 2024; 163 Gao, Deng, Jiang, Jiang (b34) 2022; 142 Li, Ding, Lewis, Chai (b42) 2021; 129 Chen, Xie, Jiang, Xie, Xie (b19) 2023; 68 Zhao, Yang, Gao, Modares, Chen, Dai (b24) 2023; 148 Chakraborty, Gao, Cui, Lewis, Jiang (b35) 2023; 56 Vamvoudakis, Lewis (b46) 2011; 47 Bernhard, Adamy (b13) 2020; 65 Köpf, Westermann, Flad, Hohmann (b23) 2020; 405 Mellone, Scarciotti (b6) 2022; 67 Zhao, Yang, Gao, Park (b39) 2024; 160 Davison (b2) 1976; 21 Zhao, Gao, Liu, Jiang (b9) 2022; 137 Lewis, Vamvoudakis (b27) 2011; 41 Xie, Zheng, Lan, Yu (b30) 2023; 141 Tabuada (b45) 2007; 52 Silani, Cucuzzella, Scherpen, Yazdanpanah (b32) 2022; 30 Chen, Lewis, Xie, Lyu, Xie (b41) 2023; 153 Lewis, Vrabie, Syrmos (b43) 2012 Rizvi, Lin (b11) 2023; 68 Lancaster, Rodman (b26) 1995 Marino, Tomei (b4) 2015; 60 Li (b7) 2022; 33 Hewer (b44) 1971; 16 Francis, Wonham (b3) 1975; 8 Jiang, Kiumarsi, Fan, Chai, Li, Lewis (b38) 2020; 50 Gao, Jiang (b22) 2016; 61 Jiang, Jiang (b18) 2012; 48 Feng, Su (b20) 2021 Huang (b1) 2004 Bian, Jiang (b29) 2016; 71 Zhao (10.1016/j.neucom.2025.129579_b9) 2022; 137 Köpf (10.1016/j.neucom.2025.129579_b23) 2020; 405 Zhao (10.1016/j.neucom.2025.129579_b40) 2024; 163 Tabuada (10.1016/j.neucom.2025.129579_b45) 2007; 52 Xie (10.1016/j.neucom.2025.129579_b30) 2023; 141 Lewis (10.1016/j.neucom.2025.129579_b43) 2012 Liang (10.1016/j.neucom.2025.129579_b5) 2021; 66 Chakraborty (10.1016/j.neucom.2025.129579_b35) 2023; 56 Xu (10.1016/j.neucom.2025.129579_b47) 2012; 48 Luo (10.1016/j.neucom.2025.129579_b37) 2021; 8 Jiang (10.1016/j.neucom.2025.129579_b38) 2020; 50 Vamvoudakis (10.1016/j.neucom.2025.129579_b46) 2011; 47 Rizvi (10.1016/j.neucom.2025.129579_b11) 2023; 68 Gao (10.1016/j.neucom.2025.129579_b22) 2016; 61 Davison (10.1016/j.neucom.2025.129579_b2) 1976; 21 Adib Yaghmaie (10.1016/j.neucom.2025.129579_b21) 2019; 110 Mellone (10.1016/j.neucom.2025.129579_b6) 2022; 67 Gao (10.1016/j.neucom.2025.129579_b10) 2018; 63 Feng (10.1016/j.neucom.2025.129579_b20) 2021 Zhao (10.1016/j.neucom.2025.129579_b33) 2023; 70 Jiang (10.1016/j.neucom.2025.129579_b31) 2023; 148 Gao (10.1016/j.neucom.2025.129579_b34) 2022; 142 Lancaster (10.1016/j.neucom.2025.129579_b26) 1995 Krener (10.1016/j.neucom.2025.129579_b14) 1992 Marino (10.1016/j.neucom.2025.129579_b4) 2015; 60 Cai (10.1016/j.neucom.2025.129579_b28) 2022; 53 Qasem (10.1016/j.neucom.2025.129579_b36) 2024; 71 Chen (10.1016/j.neucom.2025.129579_b41) 2023; 153 Zhang (10.1016/j.neucom.2025.129579_b16) 2021; 358 Zhao (10.1016/j.neucom.2025.129579_b39) 2024; 160 Zhao (10.1016/j.neucom.2025.129579_b24) 2023; 148 Bernhard (10.1016/j.neucom.2025.129579_b13) 2020; 65 Zhang (10.1016/j.neucom.2025.129579_b17) 2024 Huang (10.1016/j.neucom.2025.129579_b1) 2004 Saberi (10.1016/j.neucom.2025.129579_b15) 2003; 76 Silani (10.1016/j.neucom.2025.129579_b32) 2022; 30 Li (10.1016/j.neucom.2025.129579_b42) 2021; 129 Chen (10.1016/j.neucom.2025.129579_b19) 2023; 68 Francis (10.1016/j.neucom.2025.129579_b3) 1975; 8 Li (10.1016/j.neucom.2025.129579_b7) 2022; 33 Li (10.1016/j.neucom.2025.129579_b8) 2018; 314 Hewer (10.1016/j.neucom.2025.129579_b44) 1971; 16 Li (10.1016/j.neucom.2025.129579_b12) 2023; 516 Jiang (10.1016/j.neucom.2025.129579_b18) 2012; 48 Lewis (10.1016/j.neucom.2025.129579_b27) 2011; 41 Wu (10.1016/j.neucom.2025.129579_b25) 2024; 585 Bian (10.1016/j.neucom.2025.129579_b29) 2016; 71 |
| References_xml | – volume: 61 start-page: 4164 year: 2016 end-page: 4169 ident: b22 article-title: Adaptive dynamic programming and adaptive optimal output regulation of linear systems publication-title: IEEE Trans. Autom. Control – volume: 405 start-page: 173 year: 2020 end-page: 185 ident: b23 article-title: Adaptive optimal control for reference tracking independent of exo-system dynamics publication-title: Neurocomputing – volume: 8 start-page: 331 year: 1975 end-page: 336 ident: b3 article-title: The internal model principle of linear control theory publication-title: IFAC Proc. Vol. – volume: 53 start-page: 3426 year: 2022 end-page: 3448 ident: b28 article-title: Optimal output tracking control of linear discrete-time systems with unknown dynamics by adaptive dynamic programming and output feedback publication-title: Int. J. Syst. Sci. – volume: 163 year: 2024 ident: b40 article-title: Novel single-loop policy iteration for linear zero-sum games publication-title: Automatica – volume: 67 start-page: 1728 year: 2022 end-page: 1743 ident: b6 article-title: Output regulation of linear stochastic systems publication-title: IEEE Trans. Autom. Control – volume: 16 start-page: 382 year: 1971 end-page: 384 ident: b44 article-title: An iterative technique for the computation of the steady state gains for the discrete optimal regulator publication-title: IEEE Trans. Autom. Control – volume: 8 start-page: 1414 year: 2021 end-page: 1425 ident: b37 article-title: State estimation for coupled stochastic complex networks with periodical communication protocol and intermittent nonlinearity switching publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 314 start-page: 86 year: 2018 end-page: 93 ident: b8 article-title: Linear quadratic tracking control of unknown discrete-time systems using value iteration algorithm publication-title: Neurocomputing – year: 1995 ident: b26 article-title: Algebraic Riccati Equations – start-page: 286 year: 2021 end-page: 294 ident: b20 article-title: Adaptive dynamic programming-based robust output regulation of discrete-time linear systems via output feedback publication-title: Lecturenotes in Electrical Engineering – volume: 160 year: 2024 ident: b39 article-title: Incremental reinforcement learning and optimal output regulation under unmeasurable disturbances publication-title: Automatica – volume: 148 year: 2023 ident: b24 article-title: Linear quadratic tracking control of unknown systems: A two-phase reinforcement learning method publication-title: Automatica – start-page: 301 year: 1992 end-page: 322 ident: b14 article-title: The construction of optimal linear and nonlinear regulators publication-title: Systems, Models and Feedback: Theory and Applications: Proceedings of a U.S.-Italy Workshop in Honor of Professor Antonio Ruberti, Capri, 15–17, June 1992 – volume: 141 year: 2023 ident: b30 article-title: Adaptive optimal output regulation of unknown linear continuous-time systems by dynamic output feedback and value iteration publication-title: Control Eng. Pract. – volume: 70 start-page: 8305 year: 2023 end-page: 8313 ident: b33 article-title: Reinforcement learning and optimal control of PMSM speed servo system publication-title: IEEE Trans. Ind. Electron. – volume: 48 start-page: 1017 year: 2012 end-page: 1030 ident: b47 article-title: Stochastic optimal control of unknown linear networked control system in the presence of random delays and packet losses publication-title: Automatica – volume: 66 start-page: 2415 year: 2021 end-page: 2422 ident: b5 article-title: Robust output regulation of linear systems by event-triggered dynamic output feedback control publication-title: IEEE Trans. Autom. Control – volume: 110 year: 2019 ident: b21 article-title: Output regulation of unknown linear systems using average cost reinforcement learning publication-title: Automatica – volume: 21 start-page: 14 year: 1976 end-page: 24 ident: b2 article-title: The robust decentralized control of a general servomechanism problem publication-title: IEEE Trans. Autom. Control – volume: 148 year: 2023 ident: b31 article-title: Reinforcement learning and cooperative publication-title: Automatica – volume: 153 year: 2023 ident: b41 article-title: Distributed output data-driven optimal robust synchronization of heterogeneous multi-agent systems publication-title: Automatica – volume: 129 year: 2021 ident: b42 article-title: A novel adaptive dynamic programming based on tracking error for nonlinear discrete-time systems publication-title: Automatica – volume: 137 year: 2022 ident: b9 article-title: Adaptive optimal output regulation of linear discrete-time systems based on event-triggered output-feedback publication-title: Automatica – volume: 68 start-page: 6200 year: 2023 end-page: 6207 ident: b11 article-title: A note on state parameterizations in output feedback reinforcement learning control of linear systems publication-title: IEEE Trans. Autom. Control – volume: 30 start-page: 1130 year: 2022 end-page: 1144 ident: b32 article-title: Output regulation for load frequency control publication-title: IEEE Trans. Control Syst. Technol. – volume: 68 start-page: 2391 year: 2023 end-page: 2398 ident: b19 article-title: Robust output regulation and reinforcement learning-based output tracking design for unknown linear discrete-time systems publication-title: IEEE Trans. Autom. Control – volume: 52 start-page: 1680 year: 2007 end-page: 1685 ident: b45 article-title: Event-triggered real-time scheduling of stabilizing control tasks publication-title: IEEE Trans. Autom. Control – year: 2004 ident: b1 article-title: Nonlinear Output Regulation – start-page: 1 year: 2024 end-page: 11 ident: b17 article-title: Optimal output regulation for EV dynamic wireless charging system via internal model-based control publication-title: IEEE Trans. Ind. Electron. – volume: 65 start-page: 4416 year: 2020 end-page: 4423 ident: b13 article-title: Optimal output regulation for square, overactuated and underactuated linear systems publication-title: IEEE Trans. Autom. Control – volume: 56 start-page: 10283 year: 2023 end-page: 10288 ident: b35 article-title: Learning-based adaptive optimal output regulation of discrete-time linear systems publication-title: IFAC- Pap. – volume: 76 start-page: 319 year: 2003 end-page: 333 ident: b15 article-title: On optimal output regulation for linear systems publication-title: Internat. J. Control – volume: 71 start-page: 834 year: 2024 end-page: 845 ident: b36 article-title: Hybrid iteration ADP algorithm to solve cooperative, optimal output regulation problem for continuous-time, linear, multiagent systems: Theory and application in islanded modern microgrids with IBRs publication-title: IEEE Trans. Ind. Electron. – volume: 71 start-page: 348 year: 2016 end-page: 360 ident: b29 article-title: Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design publication-title: Automatica – volume: 48 start-page: 2699 year: 2012 end-page: 2704 ident: b18 article-title: Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics publication-title: Automatica – volume: 63 start-page: 3581 year: 2018 end-page: 3587 ident: b10 article-title: Leader-to-formation stability of multiagent systems: An adaptive optimal control approach publication-title: IEEE Trans. Autom. Control – volume: 516 start-page: 1 year: 2023 end-page: 10 ident: b12 article-title: Optimal consensus of a class of discrete-time linear multi-agent systems via value iteration with guaranteed admissibility publication-title: Neurocomputing – volume: 358 start-page: 1475 year: 2021 end-page: 1498 ident: b16 article-title: Optimal output regulation for heterogeneous descriptor multi-agent systems publication-title: J. Franklin Inst. – volume: 50 start-page: 3147 year: 2020 end-page: 3156 ident: b38 article-title: Optimal output regulation of linear discrete-time systems with unknown dynamics using reinforcement learning publication-title: IEEE Trans. Cybern. – volume: 47 start-page: 1556 year: 2011 end-page: 1569 ident: b46 article-title: Multi-player non-zero-sum games: Online adaptive learning solution of coupled Hamilton–Jacobi equations publication-title: Automatica – volume: 41 start-page: 14 year: 2011 end-page: 25 ident: b27 article-title: Reinforcement learning for partially observable dynamic processes: Adaptive dynamic programming using measured output data publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 142 year: 2022 ident: b34 article-title: Resilient reinforcement learning and robust output regulation under denial-of-service attacks publication-title: Automatica – volume: 60 start-page: 2213 year: 2015 end-page: 2218 ident: b4 article-title: Output regulation for unknown stable linear systems publication-title: IEEE Trans. Autom. Control – volume: 33 start-page: 806 year: 2022 end-page: 819 ident: b7 article-title: Fixed-time output regulation of linear delay systems by smooth time-varying control publication-title: Internat. J. Robust Nonlinear Control – volume: 585 year: 2024 ident: b25 article-title: Reinforcement learning for optimal control of linear impulsive systems with periodic impulses publication-title: Neurocomputing – year: 2012 ident: b43 article-title: Optimal Control – volume: 516 start-page: 1 year: 2023 ident: 10.1016/j.neucom.2025.129579_b12 article-title: Optimal consensus of a class of discrete-time linear multi-agent systems via value iteration with guaranteed admissibility publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.10.032 – volume: 8 start-page: 1414 issue: 2 year: 2021 ident: 10.1016/j.neucom.2025.129579_b37 article-title: H∞ State estimation for coupled stochastic complex networks with periodical communication protocol and intermittent nonlinearity switching publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2021.3058220 – volume: 110 year: 2019 ident: 10.1016/j.neucom.2025.129579_b21 article-title: Output regulation of unknown linear systems using average cost reinforcement learning publication-title: Automatica doi: 10.1016/j.automatica.2019.108549 – volume: 50 start-page: 3147 issue: 7 year: 2020 ident: 10.1016/j.neucom.2025.129579_b38 article-title: Optimal output regulation of linear discrete-time systems with unknown dynamics using reinforcement learning publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2890046 – volume: 65 start-page: 4416 issue: 10 year: 2020 ident: 10.1016/j.neucom.2025.129579_b13 article-title: Optimal output regulation for square, overactuated and underactuated linear systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2019.2959999 – year: 2012 ident: 10.1016/j.neucom.2025.129579_b43 – volume: 71 start-page: 834 issue: 1 year: 2024 ident: 10.1016/j.neucom.2025.129579_b36 article-title: Hybrid iteration ADP algorithm to solve cooperative, optimal output regulation problem for continuous-time, linear, multiagent systems: Theory and application in islanded modern microgrids with IBRs publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2023.3247734 – volume: 21 start-page: 14 issue: 1 year: 1976 ident: 10.1016/j.neucom.2025.129579_b2 article-title: The robust decentralized control of a general servomechanism problem publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1976.1101138 – volume: 137 year: 2022 ident: 10.1016/j.neucom.2025.129579_b9 article-title: Adaptive optimal output regulation of linear discrete-time systems based on event-triggered output-feedback publication-title: Automatica doi: 10.1016/j.automatica.2021.110103 – volume: 68 start-page: 6200 issue: 10 year: 2023 ident: 10.1016/j.neucom.2025.129579_b11 article-title: A note on state parameterizations in output feedback reinforcement learning control of linear systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2022.3228969 – year: 2004 ident: 10.1016/j.neucom.2025.129579_b1 – volume: 60 start-page: 2213 issue: 8 year: 2015 ident: 10.1016/j.neucom.2025.129579_b4 article-title: Output regulation for unknown stable linear systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2014.2368234 – year: 1995 ident: 10.1016/j.neucom.2025.129579_b26 – volume: 33 start-page: 806 issue: 2 year: 2022 ident: 10.1016/j.neucom.2025.129579_b7 article-title: Fixed-time output regulation of linear delay systems by smooth time-varying control publication-title: Internat. J. Robust Nonlinear Control doi: 10.1002/rnc.6459 – start-page: 1 year: 2024 ident: 10.1016/j.neucom.2025.129579_b17 article-title: Optimal output regulation for EV dynamic wireless charging system via internal model-based control publication-title: IEEE Trans. Ind. Electron. – volume: 41 start-page: 14 issue: 1 year: 2011 ident: 10.1016/j.neucom.2025.129579_b27 article-title: Reinforcement learning for partially observable dynamic processes: Adaptive dynamic programming using measured output data publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2010.2043839 – volume: 160 year: 2024 ident: 10.1016/j.neucom.2025.129579_b39 article-title: Incremental reinforcement learning and optimal output regulation under unmeasurable disturbances publication-title: Automatica doi: 10.1016/j.automatica.2023.111468 – volume: 48 start-page: 2699 issue: 10 year: 2012 ident: 10.1016/j.neucom.2025.129579_b18 article-title: Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics publication-title: Automatica doi: 10.1016/j.automatica.2012.06.096 – start-page: 286 year: 2021 ident: 10.1016/j.neucom.2025.129579_b20 article-title: Adaptive dynamic programming-based robust output regulation of discrete-time linear systems via output feedback – volume: 405 start-page: 173 year: 2020 ident: 10.1016/j.neucom.2025.129579_b23 article-title: Adaptive optimal control for reference tracking independent of exo-system dynamics publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.140 – volume: 48 start-page: 1017 issue: 6 year: 2012 ident: 10.1016/j.neucom.2025.129579_b47 article-title: Stochastic optimal control of unknown linear networked control system in the presence of random delays and packet losses publication-title: Automatica doi: 10.1016/j.automatica.2012.03.007 – volume: 141 year: 2023 ident: 10.1016/j.neucom.2025.129579_b30 article-title: Adaptive optimal output regulation of unknown linear continuous-time systems by dynamic output feedback and value iteration publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2023.105675 – volume: 52 start-page: 1680 issue: 9 year: 2007 ident: 10.1016/j.neucom.2025.129579_b45 article-title: Event-triggered real-time scheduling of stabilizing control tasks publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2007.904277 – volume: 61 start-page: 4164 issue: 12 year: 2016 ident: 10.1016/j.neucom.2025.129579_b22 article-title: Adaptive dynamic programming and adaptive optimal output regulation of linear systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2016.2548662 – volume: 148 year: 2023 ident: 10.1016/j.neucom.2025.129579_b24 article-title: Linear quadratic tracking control of unknown systems: A two-phase reinforcement learning method publication-title: Automatica doi: 10.1016/j.automatica.2022.110761 – volume: 314 start-page: 86 year: 2018 ident: 10.1016/j.neucom.2025.129579_b8 article-title: Linear quadratic tracking control of unknown discrete-time systems using value iteration algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.111 – volume: 70 start-page: 8305 issue: 8 year: 2023 ident: 10.1016/j.neucom.2025.129579_b33 article-title: Reinforcement learning and optimal control of PMSM speed servo system publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2022.3220886 – volume: 358 start-page: 1475 issue: 2 year: 2021 ident: 10.1016/j.neucom.2025.129579_b16 article-title: Optimal output regulation for heterogeneous descriptor multi-agent systems publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2020.12.008 – volume: 585 year: 2024 ident: 10.1016/j.neucom.2025.129579_b25 article-title: Reinforcement learning for optimal control of linear impulsive systems with periodic impulses publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.127569 – volume: 53 start-page: 3426 issue: 16 year: 2022 ident: 10.1016/j.neucom.2025.129579_b28 article-title: Optimal output tracking control of linear discrete-time systems with unknown dynamics by adaptive dynamic programming and output feedback publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2022.2085343 – volume: 153 year: 2023 ident: 10.1016/j.neucom.2025.129579_b41 article-title: Distributed output data-driven optimal robust synchronization of heterogeneous multi-agent systems publication-title: Automatica doi: 10.1016/j.automatica.2023.111030 – volume: 8 start-page: 331 issue: 1 year: 1975 ident: 10.1016/j.neucom.2025.129579_b3 article-title: The internal model principle of linear control theory publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)67756-5 – volume: 56 start-page: 10283 issue: 2 year: 2023 ident: 10.1016/j.neucom.2025.129579_b35 article-title: Learning-based adaptive optimal output regulation of discrete-time linear systems publication-title: IFAC- Pap. – volume: 71 start-page: 348 year: 2016 ident: 10.1016/j.neucom.2025.129579_b29 article-title: Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design publication-title: Automatica doi: 10.1016/j.automatica.2016.05.003 – volume: 129 year: 2021 ident: 10.1016/j.neucom.2025.129579_b42 article-title: A novel adaptive dynamic programming based on tracking error for nonlinear discrete-time systems publication-title: Automatica doi: 10.1016/j.automatica.2021.109687 – volume: 47 start-page: 1556 issue: 8 year: 2011 ident: 10.1016/j.neucom.2025.129579_b46 article-title: Multi-player non-zero-sum games: Online adaptive learning solution of coupled Hamilton–Jacobi equations publication-title: Automatica doi: 10.1016/j.automatica.2011.03.005 – volume: 163 year: 2024 ident: 10.1016/j.neucom.2025.129579_b40 article-title: Novel single-loop policy iteration for linear zero-sum games publication-title: Automatica doi: 10.1016/j.automatica.2024.111551 – start-page: 301 year: 1992 ident: 10.1016/j.neucom.2025.129579_b14 article-title: The construction of optimal linear and nonlinear regulators – volume: 142 year: 2022 ident: 10.1016/j.neucom.2025.129579_b34 article-title: Resilient reinforcement learning and robust output regulation under denial-of-service attacks publication-title: Automatica doi: 10.1016/j.automatica.2022.110366 – volume: 68 start-page: 2391 issue: 4 year: 2023 ident: 10.1016/j.neucom.2025.129579_b19 article-title: Robust output regulation and reinforcement learning-based output tracking design for unknown linear discrete-time systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2022.3172590 – volume: 67 start-page: 1728 issue: 4 year: 2022 ident: 10.1016/j.neucom.2025.129579_b6 article-title: Output regulation of linear stochastic systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2021.3064829 – volume: 148 year: 2023 ident: 10.1016/j.neucom.2025.129579_b31 article-title: Reinforcement learning and cooperative H∞ output regulation of linear continuous-time multi-agent systems publication-title: Automatica doi: 10.1016/j.automatica.2022.110768 – volume: 30 start-page: 1130 issue: 3 year: 2022 ident: 10.1016/j.neucom.2025.129579_b32 article-title: Output regulation for load frequency control publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2021.3099096 – volume: 66 start-page: 2415 issue: 5 year: 2021 ident: 10.1016/j.neucom.2025.129579_b5 article-title: Robust output regulation of linear systems by event-triggered dynamic output feedback control publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2020.3010772 – volume: 63 start-page: 3581 issue: 10 year: 2018 ident: 10.1016/j.neucom.2025.129579_b10 article-title: Leader-to-formation stability of multiagent systems: An adaptive optimal control approach publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2018.2799526 – volume: 76 start-page: 319 issue: 4 year: 2003 ident: 10.1016/j.neucom.2025.129579_b15 article-title: On optimal output regulation for linear systems publication-title: Internat. J. Control doi: 10.1080/0020717031000073054 – volume: 16 start-page: 382 issue: 4 year: 1971 ident: 10.1016/j.neucom.2025.129579_b44 article-title: An iterative technique for the computation of the steady state gains for the discrete optimal regulator publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1971.1099755 |
| SSID | ssj0017129 |
| Score | 2.4401436 |
| Snippet | This paper addresses the optimal output regulation problem for discrete-time linear systems with completely unknown dynamics and unmeasurable exosystem states.... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 129579 |
| SubjectTerms | Incremental dataset Optimal control Output regulation Value iteration algorithm |
| Title | Incremental value iteration for optimal output regulation of linear systems with unknown exosystems |
| URI | https://dx.doi.org/10.1016/j.neucom.2025.129579 |
| Volume | 626 |
| WOSCitedRecordID | wos001424849900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017129 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELVK4cCFHbHLB24oKHUWO8eKRYAQ4sDSW-QktmgFSVWSqh_AhzOO7bQsQnDgEkWT1Ik8r-PnySwIHaYhsFCPS4cz2K76GfEcHnAKCpGUSUJlUGe5PlzTmxvW60W3rdabzYUZP9M8Z5NJNPxXVYMMlK1SZ_-g7mZQEMA5KB2OoHY4_krx8I_XPj-YfFXKWxzpysk2prAAI_GiKGhVDqvyaKSb0RveqEgnt_WdTeZblSvHm2oGULzO1Dcf2LpPFayBdW8I43XovqjiC5lCWuNluDKtU06eCpU33CDykVs5L577TXRQ34hPC7OwgrBX1ctFNbCLrfFVkEB9dtE5otbpCDJglB_sb0hmLSjwj0C3l_li3LWfYXCci0pF-qgHHE9v_1hL-9Ma10Qe2qC2QaxHidUosR5lDs0TGkSsjea7l2e9q-ZrFO0QXbPRvL1NwazjBL--zfcUZ4a23K2gJbPfwF2Nk1XUEvkaWra9PLAx7esonYENrmGDG9hggA02sMEaNngKG1xIrGGDDTywgg02sMFT2Gyg-_Ozu5MLxzTgcFLYaZZOInwiJeOeLxNKGeMuT4FOd5gMZUKAnLM0izpBkkRBBhc6RKaMR36WhNwN3Yx7m6idF7nYQpgHnuBg-xPheT5xOWOpKzPphyGMI0WyjRw7Z_FQ11mJf9LVNqJ2YmPDFTUHjAEtP_5y549P2kWLUyjvoXY5qsQ-WkjHZf91dGCg8g4fxpKG |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incremental+value+iteration+for+optimal+output+regulation+of+linear+systems+with+unknown+exosystems&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Jing%2C+Chonglin&rft.au=Wang%2C+Chaoli&rft.au=Liang%2C+Dong&rft.au=Xu%2C+Yujing&rft.date=2025-04-14&rft.issn=0925-2312&rft.volume=626&rft.spage=129579&rft_id=info:doi/10.1016%2Fj.neucom.2025.129579&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2025_129579 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |