Strong convergence results for solving non-monotone variational inequalities via inertial projection and contraction methods

This paper introduces some new conditions imposing on inertial projection and contraction methods for solving non-monotone variational inequalities in real Hilbert spaces. Under our new conditions, we prove that the sequences generated by our algorithms converge strongly to a solution of the origina...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications in nonlinear science & numerical simulation Ročník 152; s. 109244
Hlavní autori: Dung, Vu Tien, Thong, Duong Viet, Thang, Hoang Van, Long, Luong Van
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2026
Predmet:
ISSN:1007-5704
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper introduces some new conditions imposing on inertial projection and contraction methods for solving non-monotone variational inequalities in real Hilbert spaces. Under our new conditions, we prove that the sequences generated by our algorithms converge strongly to a solution of the original variational inequality problem. To demonstrate the efficacy and behavior of our proposed algorithms, we present comprehensive numerical experiments and comparisons with existing methods from the literature. Furthermore, we showcase the applicability of our approachs by addressing a network equilibrium flow problem.
ISSN:1007-5704
DOI:10.1016/j.cnsns.2025.109244