Strong convergence results for solving non-monotone variational inequalities via inertial projection and contraction methods
This paper introduces some new conditions imposing on inertial projection and contraction methods for solving non-monotone variational inequalities in real Hilbert spaces. Under our new conditions, we prove that the sequences generated by our algorithms converge strongly to a solution of the origina...
Uložené v:
| Vydané v: | Communications in nonlinear science & numerical simulation Ročník 152; s. 109244 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.01.2026
|
| Predmet: | |
| ISSN: | 1007-5704 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper introduces some new conditions imposing on inertial projection and contraction methods for solving non-monotone variational inequalities in real Hilbert spaces. Under our new conditions, we prove that the sequences generated by our algorithms converge strongly to a solution of the original variational inequality problem. To demonstrate the efficacy and behavior of our proposed algorithms, we present comprehensive numerical experiments and comparisons with existing methods from the literature. Furthermore, we showcase the applicability of our approachs by addressing a network equilibrium flow problem. |
|---|---|
| ISSN: | 1007-5704 |
| DOI: | 10.1016/j.cnsns.2025.109244 |