Strong convergence results for solving non-monotone variational inequalities via inertial projection and contraction methods

This paper introduces some new conditions imposing on inertial projection and contraction methods for solving non-monotone variational inequalities in real Hilbert spaces. Under our new conditions, we prove that the sequences generated by our algorithms converge strongly to a solution of the origina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation Jg. 152; S. 109244
Hauptverfasser: Dung, Vu Tien, Thong, Duong Viet, Thang, Hoang Van, Long, Luong Van
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.01.2026
Schlagworte:
ISSN:1007-5704
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces some new conditions imposing on inertial projection and contraction methods for solving non-monotone variational inequalities in real Hilbert spaces. Under our new conditions, we prove that the sequences generated by our algorithms converge strongly to a solution of the original variational inequality problem. To demonstrate the efficacy and behavior of our proposed algorithms, we present comprehensive numerical experiments and comparisons with existing methods from the literature. Furthermore, we showcase the applicability of our approachs by addressing a network equilibrium flow problem.
ISSN:1007-5704
DOI:10.1016/j.cnsns.2025.109244