A Dirichlet-to-Neumann Approach for The Exact Computation of Guided Modes in Photonic Crystal Waveguides
This work deals with one-dimensional infinite perturbation---namely, line defects---in periodic media. In optics, such defects are created to construct an (open) waveguide that concentrates light. The existence and computation of the eigenmodes is a crucial issue. This is related to a self-adjoint e...
Saved in:
| Published in: | SIAM journal on scientific computing Vol. 35; no. 2; pp. B438 - B461 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2013
|
| Subjects: | |
| ISSN: | 1064-8275, 1095-7197 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This work deals with one-dimensional infinite perturbation---namely, line defects---in periodic media. In optics, such defects are created to construct an (open) waveguide that concentrates light. The existence and computation of the eigenmodes is a crucial issue. This is related to a self-adjoint eigenvalue problem associated to a PDE in an unbounded domain (in the directions orthogonal to the line defect), which makes both the analysis and the computations more complex. Using a Dirichlet-to-Neumann approach, we show that this problem is equivalent to one set on a small neighborhood of the defect. Contrary to existing methods, this one is exact, but there is a price to be paid: the reduction of the problem leads to a nonlinear eigenvalue problem of a fixed point nature. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1064-8275 1095-7197 |
| DOI: | 10.1137/12086697X |