A Dirichlet-to-Neumann Approach for The Exact Computation of Guided Modes in Photonic Crystal Waveguides
This work deals with one-dimensional infinite perturbation---namely, line defects---in periodic media. In optics, such defects are created to construct an (open) waveguide that concentrates light. The existence and computation of the eigenmodes is a crucial issue. This is related to a self-adjoint e...
Uloženo v:
| Vydáno v: | SIAM journal on scientific computing Ročník 35; číslo 2; s. B438 - B461 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2013
|
| Témata: | |
| ISSN: | 1064-8275, 1095-7197 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This work deals with one-dimensional infinite perturbation---namely, line defects---in periodic media. In optics, such defects are created to construct an (open) waveguide that concentrates light. The existence and computation of the eigenmodes is a crucial issue. This is related to a self-adjoint eigenvalue problem associated to a PDE in an unbounded domain (in the directions orthogonal to the line defect), which makes both the analysis and the computations more complex. Using a Dirichlet-to-Neumann approach, we show that this problem is equivalent to one set on a small neighborhood of the defect. Contrary to existing methods, this one is exact, but there is a price to be paid: the reduction of the problem leads to a nonlinear eigenvalue problem of a fixed point nature. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1064-8275 1095-7197 |
| DOI: | 10.1137/12086697X |