A Dirichlet-to-Neumann Approach for The Exact Computation of Guided Modes in Photonic Crystal Waveguides

This work deals with one-dimensional infinite perturbation---namely, line defects---in periodic media. In optics, such defects are created to construct an (open) waveguide that concentrates light. The existence and computation of the eigenmodes is a crucial issue. This is related to a self-adjoint e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing Jg. 35; H. 2; S. B438 - B461
1. Verfasser: Fliss, Sonia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Society for Industrial and Applied Mathematics 01.01.2013
Schlagworte:
ISSN:1064-8275, 1095-7197
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work deals with one-dimensional infinite perturbation---namely, line defects---in periodic media. In optics, such defects are created to construct an (open) waveguide that concentrates light. The existence and computation of the eigenmodes is a crucial issue. This is related to a self-adjoint eigenvalue problem associated to a PDE in an unbounded domain (in the directions orthogonal to the line defect), which makes both the analysis and the computations more complex. Using a Dirichlet-to-Neumann approach, we show that this problem is equivalent to one set on a small neighborhood of the defect. Contrary to existing methods, this one is exact, but there is a price to be paid: the reduction of the problem leads to a nonlinear eigenvalue problem of a fixed point nature. [PUBLICATION ABSTRACT]
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1064-8275
1095-7197
DOI:10.1137/12086697X