An effective dynamical evaluation and optimization mechanism for accurate motion primitives learning

Trajectory planning is an important stage in robot operation. Many imitation learning methods have been researched for learning operation skills from demonstrated trajectories. However, it is still a challenge to use the learned skill models to generate motion trajectories suitable for various chang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Jg. 55; H. 3; S. 209
Hauptverfasser: Liu, Chunfang, Li, Changfeng, Li, Xiaoli, Zuo, Guoyu, Yu, Pan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer Nature B.V 01.01.2025
Schlagworte:
ISSN:0924-669X, 1573-7497
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Trajectory planning is an important stage in robot operation. Many imitation learning methods have been researched for learning operation skills from demonstrated trajectories. However, it is still a challenge to use the learned skill models to generate motion trajectories suitable for various changing conditions. In this paper, a closed-loop dynamical evaluation and optimization mechanism is proposed for imitation learning model to generate the optimal trajectories that can adapt to multiple conditions. This mechanism works by integrating the following parts: (1) imitation learning based on an improved dynamic motion primitive; (2) constructing the trajectory similarity evaluation function; (3) presenting an enhanced whale optimization algorithm(EWOA) by introducing the piecewise decay rate and inertia weight for avoiding getting stuck in local optima. The EWOA iteratively optimizes the key parameter of the skill learning model based on the cost function of the trajectory similarity evaluation for generating the trajectory with the highest similarity to the teaching trajectory. The effectiveness of the EWOA is validated using 10 functions by comparing with the other two methods. And the feasibility of the dynamical optimization mechanism is proved under different motion primitives and various generation conditions.
AbstractList Trajectory planning is an important stage in robot operation. Many imitation learning methods have been researched for learning operation skills from demonstrated trajectories. However, it is still a challenge to use the learned skill models to generate motion trajectories suitable for various changing conditions. In this paper, a closed-loop dynamical evaluation and optimization mechanism is proposed for imitation learning model to generate the optimal trajectories that can adapt to multiple conditions. This mechanism works by integrating the following parts: (1) imitation learning based on an improved dynamic motion primitive; (2) constructing the trajectory similarity evaluation function; (3) presenting an enhanced whale optimization algorithm(EWOA) by introducing the piecewise decay rate and inertia weight for avoiding getting stuck in local optima. The EWOA iteratively optimizes the key parameter of the skill learning model based on the cost function of the trajectory similarity evaluation for generating the trajectory with the highest similarity to the teaching trajectory. The effectiveness of the EWOA is validated using 10 functions by comparing with the other two methods. And the feasibility of the dynamical optimization mechanism is proved under different motion primitives and various generation conditions.
ArticleNumber 209
Author Yu, Pan
Zuo, Guoyu
Li, Changfeng
Li, Xiaoli
Liu, Chunfang
Author_xml – sequence: 1
  givenname: Chunfang
  surname: Liu
  fullname: Liu, Chunfang
– sequence: 2
  givenname: Changfeng
  surname: Li
  fullname: Li, Changfeng
– sequence: 3
  givenname: Xiaoli
  surname: Li
  fullname: Li, Xiaoli
– sequence: 4
  givenname: Guoyu
  surname: Zuo
  fullname: Zuo, Guoyu
– sequence: 5
  givenname: Pan
  surname: Yu
  fullname: Yu, Pan
BookMark eNp9kE1Lw0AQhhepYFv9A54WPEdnP7JJjqX4BYIXBW_LZneiKcmm7iYt9debNp49Dcz78A7zLMjMdx4JuWZwywCyu8hA5kUCXCagmMyS_RmZszQTSSaLbEbmUIyRUsXHBVnEuAEAIYDNiVt5ilWFtq93SN3Bm7a2pqG4M81g-rrz1HhHu21ft_XPtGjRfhlfx5ZWXaDG2iGYHmnbndJtGMljW6QNmuBr_3lJzivTRLz6m0vy_nD_tn5KXl4fn9erl8TyVPYJqspxbnieliVi5jjkxjKTi0IUlRzTMrfCMoFOFswpdMopAa4soVTSGBRLcjP1bkP3PWDs9aYbgh9PasFS4JAqBv9TMle5yCUbKT5RNnQxBqz08TETDpqBPjrXk3M9Otcn53ovfgH0Gnj8
Cites_doi 10.23919/CCC52363.2021.9549723
10.1016/j.robot.2021.103844
10.3390/s21041278
10.1016/j.engappai.2023.106099
10.3390/app9081535
10.3389/frobt.2018.00077
10.1177/0278364919846363
10.1109/AIM52237.2022.9863416
10.1007/s10846-022-01605-4
10.1109/IROS.2017.8206196
10.1109/TCDS.2020.3021762
10.1109/TIE.2023.3250746
10.1016/j.advengsoft.2016.01.008
10.23919/ECC.2018.8550170
10.1108/AA-11-2018-0188
10.1016/j.sigpro.2017.06.017
10.1007/s12369-019-00597-w
10.1016/j.engappai.2021.104558
10.1109/TNNLS.2018.2852711
10.1002/asjc.2449
10.1109/AMC44022.2020.9244421
10.1007/s00521-020-05035-x
10.3389/fspas.2020.00039
10.1109/TMECH.2021.3057022
10.1080/17483107.2019.1642392
10.1109/LRA.2020.2972894
10.1016/j.swevo.2024.101522
10.1109/LRA.2018.2857921
10.1016/j.robot.2021.103744
10.1162/NECO_a_00393
10.1016/j.ins.2015.02.024
10.1109/ROBIO49542.2019.8961446
10.7551/mitpress/9780262034685.003.0006
10.1109/TRO.2021.3127108
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Jan 2025
Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Jan 2025
– notice: Copyright Springer Nature B.V. Feb 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10489-024-06147-w
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
ExternalDocumentID 10_1007_s10489_024_06147_w
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77I
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZY4
~A9
~EX
7SC
8FD
AESKC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c254t-e6fd22a285bbee7d208ac1a83939f4e6fb8c3c13ed491d6ed6d630dbb0b64aae3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001383333200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:46:07 EST 2025
Wed Nov 05 15:03:19 EST 2025
Sat Nov 29 05:33:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c254t-e6fd22a285bbee7d208ac1a83939f4e6fb8c3c13ed491d6ed6d630dbb0b64aae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3148683841
PQPubID 326365
ParticipantIDs proquest_journals_3150205610
proquest_journals_3148683841
crossref_primary_10_1007_s10489_024_06147_w
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References W Yang (6147_CR27) 2022; 108
M Ginesi (6147_CR21) 2021; 144
P Xia (6147_CR25) 2015; 307
J Hua (6147_CR29) 2021; 21
Z Lu (6147_CR40) 2021; 26
JW Ma (6147_CR2) 2021; 140
6147_CR22
6147_CR24
B Laperre (6147_CR23) 2020; 7
AJ Ijspeert (6147_CR6) 2013; 25
S Dou (6147_CR35) 2022; 104
H Kim (6147_CR37) 2021; 23
A Colomé (6147_CR10) 2018; 3
Y Huang (6147_CR28) 2019; 38
6147_CR3
6147_CR4
6147_CR8
6147_CR9
F Bian (6147_CR14) 2020; 40
C Lauretti (6147_CR15) 2024; PP
6147_CR30
Y Chen (6147_CR31) 2022; 15
C Wei (6147_CR18) 2020; 5
S Mirjalili (6147_CR26) 2016; 95
C Yang (6147_CR5) 2018; 30
H Garg (6147_CR17) 2016; 274
F Frank (6147_CR11) 2022; 38
6147_CR33
6147_CR36
6147_CR13
6147_CR16
KM Hamdia (6147_CR19) 2020; 33
Ö Ekrem (6147_CR1) 2023; 122
6147_CR39
A Liu (6147_CR12) 2024; 71
A-L Vollmer (6147_CR34) 2018; 5
MA Nazari Siahsar (6147_CR7) 2017; 141
J Li (6147_CR42) 2020; 13
M Chi (6147_CR32) 2019; 9
C Lauretti (6147_CR38) 2019; 11
G Liu (6147_CR20) 2024; 86
O Kroemer (6147_CR41) 2021; 22
References_xml – volume: 274
  start-page: 292
  year: 2016
  ident: 6147_CR17
  publication-title: Appl Math Comput
– ident: 6147_CR39
  doi: 10.23919/CCC52363.2021.9549723
– volume: 144
  start-page: 103844
  year: 2021
  ident: 6147_CR21
  publication-title: Robot Auton Syst
  doi: 10.1016/j.robot.2021.103844
– volume: 21
  start-page: 1278
  issue: 4
  year: 2021
  ident: 6147_CR29
  publication-title: Sensors
  doi: 10.3390/s21041278
– volume: 122
  start-page: 106099
  year: 2023
  ident: 6147_CR1
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.106099
– volume: PP
  start-page: 1
  year: 2024
  ident: 6147_CR15
  publication-title: IEEE Access
– volume: 9
  start-page: 1535
  issue: 8
  year: 2019
  ident: 6147_CR32
  publication-title: Appl Sci
  doi: 10.3390/app9081535
– volume: 5
  start-page: 77
  year: 2018
  ident: 6147_CR34
  publication-title: Front Robot AI
  doi: 10.3389/frobt.2018.00077
– volume: 38
  start-page: 833
  issue: 7
  year: 2019
  ident: 6147_CR28
  publication-title: Int J Robot Res
  doi: 10.1177/0278364919846363
– ident: 6147_CR33
  doi: 10.1109/AIM52237.2022.9863416
– volume: 104
  start-page: 53
  issue: 3
  year: 2022
  ident: 6147_CR35
  publication-title: J Intell Robot Syst
  doi: 10.1007/s10846-022-01605-4
– ident: 6147_CR30
  doi: 10.1109/IROS.2017.8206196
– volume: 22
  start-page: 1
  issue: 30
  year: 2021
  ident: 6147_CR41
  publication-title: J Mach Learn Res
– ident: 6147_CR3
  doi: 10.1109/TCDS.2020.3021762
– volume: 71
  start-page: 870
  issue: 1
  year: 2024
  ident: 6147_CR12
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2023.3250746
– volume: 95
  start-page: 51
  year: 2016
  ident: 6147_CR26
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 6147_CR13
  doi: 10.23919/ECC.2018.8550170
– volume: 40
  start-page: 85
  issue: 1
  year: 2020
  ident: 6147_CR14
  publication-title: Assembly Autom
  doi: 10.1108/AA-11-2018-0188
– volume: 141
  start-page: 309
  issue: dec
  year: 2017
  ident: 6147_CR7
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2017.06.017
– volume: 11
  start-page: 783
  issue: 5
  year: 2019
  ident: 6147_CR38
  publication-title: Int J Soc Robot
  doi: 10.1007/s12369-019-00597-w
– ident: 6147_CR22
– volume: 108
  start-page: 104558
  year: 2022
  ident: 6147_CR27
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104558
– volume: 30
  start-page: 777
  issue: 3
  year: 2018
  ident: 6147_CR5
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2852711
– volume: 23
  start-page: 2185
  issue: 5
  year: 2021
  ident: 6147_CR37
  publication-title: Asian J Control
  doi: 10.1002/asjc.2449
– ident: 6147_CR36
  doi: 10.1109/AMC44022.2020.9244421
– ident: 6147_CR9
– volume: 33
  start-page: 1923
  issue: 6
  year: 2020
  ident: 6147_CR19
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05035-x
– volume: 7
  start-page: 39
  year: 2020
  ident: 6147_CR23
  publication-title: Front Astron Space Sci
  doi: 10.3389/fspas.2020.00039
– volume: 26
  start-page: 3265
  issue: 6
  year: 2021
  ident: 6147_CR40
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2021.3057022
– ident: 6147_CR8
  doi: 10.1080/17483107.2019.1642392
– volume: 5
  start-page: 2530
  issue: 2
  year: 2020
  ident: 6147_CR18
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2020.2972894
– volume: 86
  start-page: 101522
  year: 2024
  ident: 6147_CR20
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2024.101522
– volume: 3
  start-page: 3922
  issue: 4
  year: 2018
  ident: 6147_CR10
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2018.2857921
– volume: 13
  start-page: 105
  issue: 1
  year: 2020
  ident: 6147_CR42
  publication-title: IEEE Trans Cognit Dev Syst
  doi: 10.1109/TCDS.2020.3021762
– volume: 140
  start-page: 103744
  issue: 3
  year: 2021
  ident: 6147_CR2
  publication-title: Robot Auton Syst
  doi: 10.1016/j.robot.2021.103744
– ident: 6147_CR4
– volume: 25
  start-page: 328
  issue: 2
  year: 2013
  ident: 6147_CR6
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00393
– volume: 307
  start-page: 39
  year: 2015
  ident: 6147_CR25
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.02.024
– ident: 6147_CR24
  doi: 10.1109/ROBIO49542.2019.8961446
– ident: 6147_CR16
  doi: 10.7551/mitpress/9780262034685.003.0006
– volume: 15
  start-page: 177
  issue: 2
  year: 2022
  ident: 6147_CR31
  publication-title: Int J Agri Biol Eng
– volume: 38
  start-page: 2276
  issue: 4
  year: 2022
  ident: 6147_CR11
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2021.3127108
SSID ssj0003301
Score 2.3740468
Snippet Trajectory planning is an important stage in robot operation. Many imitation learning methods have been researched for learning operation skills from...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 209
SubjectTerms Algorithms
Closed loops
Cost function
Decay rate
Effectiveness
Machine learning
Optimization
Robot dynamics
Similarity
Trajectory optimization
Trajectory planning
Title An effective dynamical evaluation and optimization mechanism for accurate motion primitives learning
URI https://www.proquest.com/docview/3148683841
https://www.proquest.com/docview/3150205610
Volume 55
WOSCitedRecordID wos001383333200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lePBifWK1Sg7eNLC7SfM4FlE8FfFFb0uSSaWHbksf9u872d1aCvbQc0h2mWQm35dk5iPkDimJBiUCi6U9WITY6HOpZtwECSpmYnJXik2ofl8PBua1QR523uDHJDcRn_VkIqoQCMVWGHBTmUW5grf3r7-wi8S8lMdDQsGkNIM6Q-b_IbZ3oe0gXO4sz639_umYHNUIkvaqKT8hjVCcktZanYHWznpGoFfQ6rUGBjQKlfI8dtzU96a2ADrBmDGukzHpOMRE4NF8TBHLUuv9MlaSoJXUD51GCbA42pzWYhPf5-Tz-enj8YXVmgrMIxVcsCCHkGU2013nQlCQJdr61CJM4mYosNVpz33KAwiTggwgQfIEnEucFNYGfkGaxaQIl4RKSEzQ8SZPdYUTYK30yoFRBili0NAm92sb59OqdEa-KZIcDZijAfPSgPmqTTrrachrN5rnHMma1FyLdEdzF9FuRIBXe33rmhwi7jHVSUqHNBezZbghB_5nMZrPbstl9QsBM8aW
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+dynamical+evaluation+and+optimization+mechanism+for+accurate+motion+primitives+learning&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=3&rft.spage=209&rft_id=info:doi/10.1007%2Fs10489-024-06147-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon