An effective dynamical evaluation and optimization mechanism for accurate motion primitives learning
Trajectory planning is an important stage in robot operation. Many imitation learning methods have been researched for learning operation skills from demonstrated trajectories. However, it is still a challenge to use the learned skill models to generate motion trajectories suitable for various chang...
Gespeichert in:
| Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Jg. 55; H. 3; S. 209 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Boston
Springer Nature B.V
01.01.2025
|
| Schlagworte: | |
| ISSN: | 0924-669X, 1573-7497 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Trajectory planning is an important stage in robot operation. Many imitation learning methods have been researched for learning operation skills from demonstrated trajectories. However, it is still a challenge to use the learned skill models to generate motion trajectories suitable for various changing conditions. In this paper, a closed-loop dynamical evaluation and optimization mechanism is proposed for imitation learning model to generate the optimal trajectories that can adapt to multiple conditions. This mechanism works by integrating the following parts: (1) imitation learning based on an improved dynamic motion primitive; (2) constructing the trajectory similarity evaluation function; (3) presenting an enhanced whale optimization algorithm(EWOA) by introducing the piecewise decay rate and inertia weight for avoiding getting stuck in local optima. The EWOA iteratively optimizes the key parameter of the skill learning model based on the cost function of the trajectory similarity evaluation for generating the trajectory with the highest similarity to the teaching trajectory. The effectiveness of the EWOA is validated using 10 functions by comparing with the other two methods. And the feasibility of the dynamical optimization mechanism is proved under different motion primitives and various generation conditions. |
|---|---|
| AbstractList | Trajectory planning is an important stage in robot operation. Many imitation learning methods have been researched for learning operation skills from demonstrated trajectories. However, it is still a challenge to use the learned skill models to generate motion trajectories suitable for various changing conditions. In this paper, a closed-loop dynamical evaluation and optimization mechanism is proposed for imitation learning model to generate the optimal trajectories that can adapt to multiple conditions. This mechanism works by integrating the following parts: (1) imitation learning based on an improved dynamic motion primitive; (2) constructing the trajectory similarity evaluation function; (3) presenting an enhanced whale optimization algorithm(EWOA) by introducing the piecewise decay rate and inertia weight for avoiding getting stuck in local optima. The EWOA iteratively optimizes the key parameter of the skill learning model based on the cost function of the trajectory similarity evaluation for generating the trajectory with the highest similarity to the teaching trajectory. The effectiveness of the EWOA is validated using 10 functions by comparing with the other two methods. And the feasibility of the dynamical optimization mechanism is proved under different motion primitives and various generation conditions. |
| ArticleNumber | 209 |
| Author | Yu, Pan Zuo, Guoyu Li, Changfeng Li, Xiaoli Liu, Chunfang |
| Author_xml | – sequence: 1 givenname: Chunfang surname: Liu fullname: Liu, Chunfang – sequence: 2 givenname: Changfeng surname: Li fullname: Li, Changfeng – sequence: 3 givenname: Xiaoli surname: Li fullname: Li, Xiaoli – sequence: 4 givenname: Guoyu surname: Zuo fullname: Zuo, Guoyu – sequence: 5 givenname: Pan surname: Yu fullname: Yu, Pan |
| BookMark | eNp9kE1Lw0AQhhepYFv9A54WPEdnP7JJjqX4BYIXBW_LZneiKcmm7iYt9debNp49Dcz78A7zLMjMdx4JuWZwywCyu8hA5kUCXCagmMyS_RmZszQTSSaLbEbmUIyRUsXHBVnEuAEAIYDNiVt5ilWFtq93SN3Bm7a2pqG4M81g-rrz1HhHu21ft_XPtGjRfhlfx5ZWXaDG2iGYHmnbndJtGMljW6QNmuBr_3lJzivTRLz6m0vy_nD_tn5KXl4fn9erl8TyVPYJqspxbnieliVi5jjkxjKTi0IUlRzTMrfCMoFOFswpdMopAa4soVTSGBRLcjP1bkP3PWDs9aYbgh9PasFS4JAqBv9TMle5yCUbKT5RNnQxBqz08TETDpqBPjrXk3M9Otcn53ovfgH0Gnj8 |
| Cites_doi | 10.23919/CCC52363.2021.9549723 10.1016/j.robot.2021.103844 10.3390/s21041278 10.1016/j.engappai.2023.106099 10.3390/app9081535 10.3389/frobt.2018.00077 10.1177/0278364919846363 10.1109/AIM52237.2022.9863416 10.1007/s10846-022-01605-4 10.1109/IROS.2017.8206196 10.1109/TCDS.2020.3021762 10.1109/TIE.2023.3250746 10.1016/j.advengsoft.2016.01.008 10.23919/ECC.2018.8550170 10.1108/AA-11-2018-0188 10.1016/j.sigpro.2017.06.017 10.1007/s12369-019-00597-w 10.1016/j.engappai.2021.104558 10.1109/TNNLS.2018.2852711 10.1002/asjc.2449 10.1109/AMC44022.2020.9244421 10.1007/s00521-020-05035-x 10.3389/fspas.2020.00039 10.1109/TMECH.2021.3057022 10.1080/17483107.2019.1642392 10.1109/LRA.2020.2972894 10.1016/j.swevo.2024.101522 10.1109/LRA.2018.2857921 10.1016/j.robot.2021.103744 10.1162/NECO_a_00393 10.1016/j.ins.2015.02.024 10.1109/ROBIO49542.2019.8961446 10.7551/mitpress/9780262034685.003.0006 10.1109/TRO.2021.3127108 |
| ContentType | Journal Article |
| Copyright | Copyright Springer Nature B.V. Jan 2025 Copyright Springer Nature B.V. Feb 2025 |
| Copyright_xml | – notice: Copyright Springer Nature B.V. Jan 2025 – notice: Copyright Springer Nature B.V. Feb 2025 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10489-024-06147-w |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| ExternalDocumentID | 10_1007_s10489_024_06147_w |
| GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77I 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZY4 ~A9 ~EX 7SC 8FD AESKC JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c254t-e6fd22a285bbee7d208ac1a83939f4e6fb8c3c13ed491d6ed6d630dbb0b64aae3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001383333200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-669X |
| IngestDate | Wed Nov 05 14:46:07 EST 2025 Wed Nov 05 15:03:19 EST 2025 Sat Nov 29 05:33:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c254t-e6fd22a285bbee7d208ac1a83939f4e6fb8c3c13ed491d6ed6d630dbb0b64aae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3148683841 |
| PQPubID | 326365 |
| ParticipantIDs | proquest_journals_3150205610 proquest_journals_3148683841 crossref_primary_10_1007_s10489_024_06147_w |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | W Yang (6147_CR27) 2022; 108 M Ginesi (6147_CR21) 2021; 144 P Xia (6147_CR25) 2015; 307 J Hua (6147_CR29) 2021; 21 Z Lu (6147_CR40) 2021; 26 JW Ma (6147_CR2) 2021; 140 6147_CR22 6147_CR24 B Laperre (6147_CR23) 2020; 7 AJ Ijspeert (6147_CR6) 2013; 25 S Dou (6147_CR35) 2022; 104 H Kim (6147_CR37) 2021; 23 A Colomé (6147_CR10) 2018; 3 Y Huang (6147_CR28) 2019; 38 6147_CR3 6147_CR4 6147_CR8 6147_CR9 F Bian (6147_CR14) 2020; 40 C Lauretti (6147_CR15) 2024; PP 6147_CR30 Y Chen (6147_CR31) 2022; 15 C Wei (6147_CR18) 2020; 5 S Mirjalili (6147_CR26) 2016; 95 C Yang (6147_CR5) 2018; 30 H Garg (6147_CR17) 2016; 274 F Frank (6147_CR11) 2022; 38 6147_CR33 6147_CR36 6147_CR13 6147_CR16 KM Hamdia (6147_CR19) 2020; 33 Ö Ekrem (6147_CR1) 2023; 122 6147_CR39 A Liu (6147_CR12) 2024; 71 A-L Vollmer (6147_CR34) 2018; 5 MA Nazari Siahsar (6147_CR7) 2017; 141 J Li (6147_CR42) 2020; 13 M Chi (6147_CR32) 2019; 9 C Lauretti (6147_CR38) 2019; 11 G Liu (6147_CR20) 2024; 86 O Kroemer (6147_CR41) 2021; 22 |
| References_xml | – volume: 274 start-page: 292 year: 2016 ident: 6147_CR17 publication-title: Appl Math Comput – ident: 6147_CR39 doi: 10.23919/CCC52363.2021.9549723 – volume: 144 start-page: 103844 year: 2021 ident: 6147_CR21 publication-title: Robot Auton Syst doi: 10.1016/j.robot.2021.103844 – volume: 21 start-page: 1278 issue: 4 year: 2021 ident: 6147_CR29 publication-title: Sensors doi: 10.3390/s21041278 – volume: 122 start-page: 106099 year: 2023 ident: 6147_CR1 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.106099 – volume: PP start-page: 1 year: 2024 ident: 6147_CR15 publication-title: IEEE Access – volume: 9 start-page: 1535 issue: 8 year: 2019 ident: 6147_CR32 publication-title: Appl Sci doi: 10.3390/app9081535 – volume: 5 start-page: 77 year: 2018 ident: 6147_CR34 publication-title: Front Robot AI doi: 10.3389/frobt.2018.00077 – volume: 38 start-page: 833 issue: 7 year: 2019 ident: 6147_CR28 publication-title: Int J Robot Res doi: 10.1177/0278364919846363 – ident: 6147_CR33 doi: 10.1109/AIM52237.2022.9863416 – volume: 104 start-page: 53 issue: 3 year: 2022 ident: 6147_CR35 publication-title: J Intell Robot Syst doi: 10.1007/s10846-022-01605-4 – ident: 6147_CR30 doi: 10.1109/IROS.2017.8206196 – volume: 22 start-page: 1 issue: 30 year: 2021 ident: 6147_CR41 publication-title: J Mach Learn Res – ident: 6147_CR3 doi: 10.1109/TCDS.2020.3021762 – volume: 71 start-page: 870 issue: 1 year: 2024 ident: 6147_CR12 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2023.3250746 – volume: 95 start-page: 51 year: 2016 ident: 6147_CR26 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – ident: 6147_CR13 doi: 10.23919/ECC.2018.8550170 – volume: 40 start-page: 85 issue: 1 year: 2020 ident: 6147_CR14 publication-title: Assembly Autom doi: 10.1108/AA-11-2018-0188 – volume: 141 start-page: 309 issue: dec year: 2017 ident: 6147_CR7 publication-title: Signal Process doi: 10.1016/j.sigpro.2017.06.017 – volume: 11 start-page: 783 issue: 5 year: 2019 ident: 6147_CR38 publication-title: Int J Soc Robot doi: 10.1007/s12369-019-00597-w – ident: 6147_CR22 – volume: 108 start-page: 104558 year: 2022 ident: 6147_CR27 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104558 – volume: 30 start-page: 777 issue: 3 year: 2018 ident: 6147_CR5 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2852711 – volume: 23 start-page: 2185 issue: 5 year: 2021 ident: 6147_CR37 publication-title: Asian J Control doi: 10.1002/asjc.2449 – ident: 6147_CR36 doi: 10.1109/AMC44022.2020.9244421 – ident: 6147_CR9 – volume: 33 start-page: 1923 issue: 6 year: 2020 ident: 6147_CR19 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05035-x – volume: 7 start-page: 39 year: 2020 ident: 6147_CR23 publication-title: Front Astron Space Sci doi: 10.3389/fspas.2020.00039 – volume: 26 start-page: 3265 issue: 6 year: 2021 ident: 6147_CR40 publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2021.3057022 – ident: 6147_CR8 doi: 10.1080/17483107.2019.1642392 – volume: 5 start-page: 2530 issue: 2 year: 2020 ident: 6147_CR18 publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2020.2972894 – volume: 86 start-page: 101522 year: 2024 ident: 6147_CR20 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2024.101522 – volume: 3 start-page: 3922 issue: 4 year: 2018 ident: 6147_CR10 publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2018.2857921 – volume: 13 start-page: 105 issue: 1 year: 2020 ident: 6147_CR42 publication-title: IEEE Trans Cognit Dev Syst doi: 10.1109/TCDS.2020.3021762 – volume: 140 start-page: 103744 issue: 3 year: 2021 ident: 6147_CR2 publication-title: Robot Auton Syst doi: 10.1016/j.robot.2021.103744 – ident: 6147_CR4 – volume: 25 start-page: 328 issue: 2 year: 2013 ident: 6147_CR6 publication-title: Neural Comput doi: 10.1162/NECO_a_00393 – volume: 307 start-page: 39 year: 2015 ident: 6147_CR25 publication-title: Inf Sci doi: 10.1016/j.ins.2015.02.024 – ident: 6147_CR24 doi: 10.1109/ROBIO49542.2019.8961446 – ident: 6147_CR16 doi: 10.7551/mitpress/9780262034685.003.0006 – volume: 15 start-page: 177 issue: 2 year: 2022 ident: 6147_CR31 publication-title: Int J Agri Biol Eng – volume: 38 start-page: 2276 issue: 4 year: 2022 ident: 6147_CR11 publication-title: IEEE Trans Robot doi: 10.1109/TRO.2021.3127108 |
| SSID | ssj0003301 |
| Score | 2.3740468 |
| Snippet | Trajectory planning is an important stage in robot operation. Many imitation learning methods have been researched for learning operation skills from... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 209 |
| SubjectTerms | Algorithms Closed loops Cost function Decay rate Effectiveness Machine learning Optimization Robot dynamics Similarity Trajectory optimization Trajectory planning |
| Title | An effective dynamical evaluation and optimization mechanism for accurate motion primitives learning |
| URI | https://www.proquest.com/docview/3148683841 https://www.proquest.com/docview/3150205610 |
| Volume | 55 |
| WOSCitedRecordID | wos001383333200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMdPVcXAQnmKQkEe2CBS_YjtjBWiYkAV4qVukV9BHZpWTUq_PnaSUlWiQ5csVpzoHP99F_vuB3CHcWayjNqIYeYvImaRFjYgAQ1hWhgVu6qI64sYjeR4nLy24GHnDn5IcmPhWA9hgULARLTygos5CbiCt_evP9n1gXmFx_MBRcR5Mm4yZP7vYnsV2hbhamUZdvZ7p2M4ajxINKiH_ARaLj-FzprOgJrJegZ2kKP6tIYXNGRr8ry_cVPfG6ncopnXjGmTjImmLiQCT4op8r4sUsYsQyUJVKN-0DwgwEJvBWpgE9_n8Dl8-nh8jhqmQmR8KFhGjmeWEEVkrLVzwpK-VAYr7ybRJGO-VUtDDabOsgRb7iy3nPat1n3NmVKOXkA7n-XuEhATRsaJlNpRy6wIoa7GhEsbU-KU0124X9s4ndelM9JNkeRgwNQbMK0MmK660FsPQ9pMoyKlPljjkkqGdzTH3tsNHuDVXs-6hkMSML7Vn5QetMvF0t3AgfkpJ8XitvqsfgHMG8fy |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+dynamical+evaluation+and+optimization+mechanism+for+accurate+motion+primitives+learning&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=3&rft.spage=209&rft_id=info:doi/10.1007%2Fs10489-024-06147-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |