A dynamic routing algorithm of CapsNet for drift prognosis
•Drift prognosis aims to detect a coming drift, but lacks research.•We propose a drift prognosis algorithm (DR-DD) of capsule neural network.•We tailor Kullback-Leibler divergence to quantify the difference among capsules.•Compared with other 11 drift detection methods on 7 datasets, only DR-DD can...
Saved in:
| Published in: | Expert systems with applications Vol. 296; p. 128925 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.01.2026
|
| Subjects: | |
| ISSN: | 0957-4174 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Drift prognosis aims to detect a coming drift, but lacks research.•We propose a drift prognosis algorithm (DR-DD) of capsule neural network.•We tailor Kullback-Leibler divergence to quantify the difference among capsules.•Compared with other 11 drift detection methods on 7 datasets, only DR-DD can achieve drift prognosis.
In data stream mining, detecting significant changes in a data stream is called drift detection. Detecting drift before it starts is an important problem, but there is very limited research. We call it “drift prognosis”. Many existing drift detection methods only report a drift after it has occurred. This paper tackles this challenge, taking advantage of Capsule Networks (CapsNets), a recent deep-learning architecture. CapsNets can encapsulate the properties of features. We propose a novel dynamic routing algorithm for drift prognosis, named DR-DD, which can transform between capsule layers to capture subtle changes, indicating a potential drift. Compared to 11 drift detection methods in the literature, our DR-DD algorithm is the only one that can pre-diagnose a drift, before it occurs. |
|---|---|
| AbstractList | •Drift prognosis aims to detect a coming drift, but lacks research.•We propose a drift prognosis algorithm (DR-DD) of capsule neural network.•We tailor Kullback-Leibler divergence to quantify the difference among capsules.•Compared with other 11 drift detection methods on 7 datasets, only DR-DD can achieve drift prognosis.
In data stream mining, detecting significant changes in a data stream is called drift detection. Detecting drift before it starts is an important problem, but there is very limited research. We call it “drift prognosis”. Many existing drift detection methods only report a drift after it has occurred. This paper tackles this challenge, taking advantage of Capsule Networks (CapsNets), a recent deep-learning architecture. CapsNets can encapsulate the properties of features. We propose a novel dynamic routing algorithm for drift prognosis, named DR-DD, which can transform between capsule layers to capture subtle changes, indicating a potential drift. Compared to 11 drift detection methods in the literature, our DR-DD algorithm is the only one that can pre-diagnose a drift, before it occurs. |
| ArticleNumber | 128925 |
| Author | Lin, Borong Woodward, John R. Jin, Nanlin |
| Author_xml | – sequence: 1 givenname: Borong orcidid: 0009-0008-3108-1903 surname: Lin fullname: Lin, Borong email: Borong.Lin19@student.xjtlu.edu.cn organization: Department of Computing, Xi’an Jiaotong-Liverpool University, Suzhou, 215123, JiangSu, China – sequence: 2 givenname: Nanlin orcidid: 0000-0002-0990-6381 surname: Jin fullname: Jin, Nanlin email: Nanlin.Jin@xjtlu.edu.cn organization: Department of Computing, Xi’an Jiaotong-Liverpool University, Suzhou, 215123, JiangSu, China – sequence: 3 givenname: John R. orcidid: 0000-0002-2093-8990 surname: Woodward fullname: Woodward, John R. email: j.woodward@lboro.ac.uk organization: Department of Computer Science, Loughborough University, Loughborough, LE11 3TU, Leicestershire, UK |
| BookMark | eNp9j71OwzAURj0UibbwAkx-gYRrO4lrxFJV_EkVLDBbjn1dHDVxZQdQ355WYWb6pvPpnAWZDXFAQm4YlAxYc9uVmH9MyYHXJeMrxesZmYOqZVExWV2SRc4dAJMAck7u1tQdB9MHS1P8GsOwo2a_iymMnz2Nnm7MIb_iSH1M1KXgR3pIcTfEHPIVufBmn_H6b5fk4_HhffNcbN-eXjbrbWF5LcbCGQc1NhwBlKn8SUsJA15aDkJW1grZuEq1om2bRkjBvHFtbVesbQygUkwsCZ9-bYo5J_T6kEJv0lEz0Odi3elzsT4X66n4BN1PEJ7MvgMmnW3AwaILCe2oXQz_4b9V0WLP |
| Cites_doi | 10.1109/69.250074 10.1016/j.ins.2022.07.152 10.1080/08923647.2019.1663082 10.1109/TCBB.2020.2994780 10.1016/j.ijinfomgt.2019.01.006 10.1016/j.eswa.2014.07.019 10.1016/j.neucom.2024.128933 10.1016/j.actaastro.2014.06.034 10.1080/01621459.1950.10501143 10.1016/j.eswa.2023.122114 10.1016/j.renene.2022.11.064 10.1109/TKDE.2014.2345382 10.3390/app122211688 10.1016/j.knosys.2024.111596 10.1214/aoms/1177729694 10.1137/1.9781611972771.42 10.1109/TAI.2022.3224416 10.1016/j.egyr.2021.08.064 10.1016/j.ins.2025.122134 10.1109/TWC.2025.3533959 10.1016/j.neucom.2019.11.111 10.1016/j.inffus.2017.02.004 10.1016/j.knosys.2023.110705 10.1016/j.jksuci.2019.09.014 10.1016/j.engappai.2024.109552 10.1016/j.ins.2025.122113 10.1016/j.ins.2020.05.037 10.1016/j.compbiomed.2022.105303 10.1007/s10994-012-5320-9 10.1016/j.ins.2022.07.065 10.1007/s10115-023-02025-y 10.1016/j.ins.2022.07.022 10.1007/s10618-018-0605-7 10.1109/ACCESS.2025.3544661 10.1109/TCYB.2021.3059002 10.1007/s10586-024-04284-y 10.1016/j.jksuci.2021.11.006 10.1016/j.patcog.2023.110142 10.1016/S1573-4412(05)80005-4 10.32604/cmc.2023.033934 10.1016/j.eswa.2024.124695 10.1016/j.neucom.2025.129595 10.1016/j.neucom.2025.130083 10.1016/j.asoc.2018.11.006 10.1109/ACCESS.2025.3557229 10.1109/TSC.2019.2959775 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2025.128925 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_eswa_2025_128925 S0957417425025424 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ABUFD ACDAQ ACGFS ACHRH ACLOT ACNTT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- ~HD 29G 9DU AAAKG AAQXK AAYXX ABKBG ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT |
| ID | FETCH-LOGICAL-c253t-dad05e62e009a4f20293a0f7c20374cc376d49b3bb663731fadb5c81b6a0e9913 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001534243000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Nov 29 07:22:07 EST 2025 Sat Oct 25 17:37:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Data stream mining Capsule networks Drift detection |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c253t-dad05e62e009a4f20293a0f7c20374cc376d49b3bb663731fadb5c81b6a0e9913 |
| ORCID | 0009-0008-3108-1903 0000-0002-2093-8990 0000-0002-0990-6381 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2025_128925 elsevier_sciencedirect_doi_10_1016_j_eswa_2025_128925 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-01-15 |
| PublicationDateYYYYMMDD | 2026-01-15 |
| PublicationDate_xml | – month: 01 year: 2026 text: 2026-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2026 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Baena-Garcıa, del Campo-Ávila, Fidalgo, Bifet, Gavalda, Morales-Bueno (bib0005) 2006; 6 Singh, Thurman (bib0056) 2019; 33 Shao, Pan, Xu, Zhang (bib0055) 2021; 7 Reis, Flach, Matwin, Batista (bib0052) 2016 Castillo, Gama (bib0011) 2006 Sabour, Frosst, Hinton (bib0053) 2017; 30 Wang, Jin, Davies, Woo (bib0061) 2023; 275 Pereira, Silva (bib0047) 2025; 13 Yu, Zhang, Liu, Lu, Wen, Zhang (bib0068) 2022; 608 Bifet, A., & Gavaldà, R. (2007). Learning from time-changing data with adaptive windowing. In Proceedings of the 2007 SIAM International Conference on Data Mining (SDM), pp. 443–448). Gama, Medas, Castillo, Rodrigues (bib0020) 2004 Palli, Jaafar, Hashmani, Gomes, Alsughayyir, Gilal (bib0045) 2023; 75 Wang, Jin, Woo, Woodward, Davies (bib0062) 2022; 609 Wang, Wang, Hu, Si, Li (bib0065) 2014; 103 Hinton, Sabour, Frosst (bib0028) 2018 Peng, He, Wang (bib0046) 2020; 10 Wang, Yu, Jin, Davies, Woo (bib0063) 2024; 238 Deng, Tang, Xi, Zhang (bib0016) 2023; 16 Lu, Liu, Dong, Gu, Gama, Zhang (bib0041) 2019; 31 Porwik, Wrobel, Orczyk, Doroz (bib0049) 2024; 27 Guo, Pu, He, Jiao, Ji, Yang (bib0026) 2025; 711 Raab, Heusinger, Schleif (bib0051) 2020; 416 Jiao, Guo, Yang, Pu, Zheng, Gong (bib0030) 2024; 5 Gonçalves, de Carvalho Santos, Barros, Vieira (bib0024) 2014; 41 Street, Kim (bib0058) 2001 Priya, Uthra (bib0050) 2021 Palli, Jaafar, Gomes, Hashmani, Gilal (bib0044) 2022; 12 Agrawal, Imienski, Swamy (bib0003) 1991; 5 . Sobolewski, Wozniak (bib0057) 2013; 19 Malialis, Filippou, Panayiotou, Polycarpou (bib0042) 2025; 637 Harries, M., Wales, N.S. et al. (1999). Splice-2 comparative evaluation: Electricity pricing. Liu, Godahewa, Bandara, Bergmeir (bib0039) 2023 Shang, Zhang, Lu (bib0054) 2025; 617 Li, Ru, Fei, Chen, Wang (bib0037) 2025; 15 Kullback, Leibler (bib0033) 1951; 22 Zhao, Li, Zeng, Wang, Zhang (bib0069) 2022; 610 Aroian, Levene (bib0004) 1950; 45 Greco, Vacchetti, Apiletti, Cerquitelli (bib0025) 2024; 27 Chen, Xu, Peng, Yang (bib0015) 2022; 52 Lin, Jin (bib0038) 2023 Li, Wang, Zhang, Liu, Song, Cheng, Chen (bib0035) 2022; 143 Chen, Shen, Zhao, Yang, Zhang (bib0014) 2024; 148 Newey, McFadden (bib0043) 1994; 4 Cao, Hou, Lv, Gao, Di, Zhang (bib0010) 2025; 625 Bornschein, Li, Hutter (bib0009) 2023 Gemaque, Costa, Giusti, Dos Santos (bib0023) 2020; 10 Ceci, Corizzo, Malerba, Rashkovska (bib0012) 2019; 33 Zhou, Li, Liang (bib0070) 2021; 18 Agrahari, Singh (bib0001) 2022; 34 Agarwal, Sinha, Das (bib0002) 2022 Chapelin, Voisin, Rose, Iung, Steck, Chaves, Jotz (bib0013) 2025; 139 Uzlaner, Raviv, Shlezinger, Todros (bib0060) 2025 Fernando Panicachi Cocovilo Filho, Palermo Coelho (bib0018) 2024; 66 Krawczyk, Minku, Gama, Stefanowski, Woźniak (bib0032) 2017; 37 Sun, Mi, Jin (bib0059) 2024; 290 Li, Jiang, Mei, Hu, Zhang (bib0036) 2020; 536 Yan, Zhao, Xie, Precup (bib0067) 2024; 255 Gama, Rodrigues, Sebastião (bib0021) 2013; 90 Deng, Feng, Lin, Yen (bib0017) 2025; 712 Kwabena Patrick, Felix Adekoya, Abra Mighty, Edward (bib0034) 2022; 34 Pesaranghader, Viktor, Paquet (bib0048) 2018 Gellert, Florea, Fiore, Palmieri, Zanetti (bib0022) 2019; 49 Wang, Ma, Miao, Liu, Yang (bib0064) 2022; 15 Bao, Jin, Xu (bib0006) 2025; 13 Xie, Xu, Jiang, Lu, Wang (bib0066) 2023; 202 Berghout, Benbouzid (bib0007) 2023; 58 Hulten, Spencer, Domingos (bib0029) 2001 Kirillov, Panov (bib0031) 2022; 12 Liu, Loo, Seera (bib0040) 2019; 75 Frías-Blanco, Campo-Ávila, Ramos-Jiménez, Morales-Bueno, Ortiz-Díaz, Caballero-Mota (bib0019) 2015; 27 Zhou (10.1016/j.eswa.2025.128925_bib0070) 2021; 18 Chapelin (10.1016/j.eswa.2025.128925_bib0013) 2025; 139 Yu (10.1016/j.eswa.2025.128925_bib0068) 2022; 608 Raab (10.1016/j.eswa.2025.128925_bib0051) 2020; 416 Shao (10.1016/j.eswa.2025.128925_bib0055) 2021; 7 Wang (10.1016/j.eswa.2025.128925_bib0061) 2023; 275 Pereira (10.1016/j.eswa.2025.128925_bib0047) 2025; 13 Gellert (10.1016/j.eswa.2025.128925_bib0022) 2019; 49 Deng (10.1016/j.eswa.2025.128925_bib0016) 2023; 16 Li (10.1016/j.eswa.2025.128925_bib0036) 2020; 536 Reis (10.1016/j.eswa.2025.128925_bib0052) 2016 Pesaranghader (10.1016/j.eswa.2025.128925_bib0048) 2018 10.1016/j.eswa.2025.128925_bib0027 Liu (10.1016/j.eswa.2025.128925_bib0040) 2019; 75 Wang (10.1016/j.eswa.2025.128925_bib0062) 2022; 609 Wang (10.1016/j.eswa.2025.128925_bib0064) 2022; 15 Singh (10.1016/j.eswa.2025.128925_bib0056) 2019; 33 Sun (10.1016/j.eswa.2025.128925_bib0059) 2024; 290 Malialis (10.1016/j.eswa.2025.128925_bib0042) 2025; 637 Hinton (10.1016/j.eswa.2025.128925_bib0028) 2018 Gama (10.1016/j.eswa.2025.128925_bib0020) 2004 Hulten (10.1016/j.eswa.2025.128925_bib0029) 2001 Zhao (10.1016/j.eswa.2025.128925_bib0069) 2022; 610 Agrahari (10.1016/j.eswa.2025.128925_bib0001) 2022; 34 Bao (10.1016/j.eswa.2025.128925_bib0006) 2025; 13 Xie (10.1016/j.eswa.2025.128925_bib0066) 2023; 202 Ceci (10.1016/j.eswa.2025.128925_bib0012) 2019; 33 Sobolewski (10.1016/j.eswa.2025.128925_bib0057) 2013; 19 Li (10.1016/j.eswa.2025.128925_bib0037) 2025; 15 Gama (10.1016/j.eswa.2025.128925_bib0021) 2013; 90 Palli (10.1016/j.eswa.2025.128925_bib0045) 2023; 75 Lin (10.1016/j.eswa.2025.128925_bib0038) 2023 Peng (10.1016/j.eswa.2025.128925_bib0046) 2020; 10 Berghout (10.1016/j.eswa.2025.128925_bib0007) 2023; 58 Shang (10.1016/j.eswa.2025.128925_bib0054) 2025; 617 Baena-Garcıa (10.1016/j.eswa.2025.128925_bib0005) 2006; 6 Porwik (10.1016/j.eswa.2025.128925_bib0049) 2024; 27 Deng (10.1016/j.eswa.2025.128925_bib0017) 2025; 712 Wang (10.1016/j.eswa.2025.128925_bib0063) 2024; 238 Agarwal (10.1016/j.eswa.2025.128925_bib0002) 2022 Gonçalves (10.1016/j.eswa.2025.128925_bib0024) 2014; 41 Chen (10.1016/j.eswa.2025.128925_bib0014) 2024; 148 Sabour (10.1016/j.eswa.2025.128925_bib0053) 2017; 30 Yan (10.1016/j.eswa.2025.128925_bib0067) 2024; 255 Kirillov (10.1016/j.eswa.2025.128925_bib0031) 2022; 12 Lu (10.1016/j.eswa.2025.128925_bib0041) 2019; 31 Chen (10.1016/j.eswa.2025.128925_bib0015) 2022; 52 Jiao (10.1016/j.eswa.2025.128925_bib0030) 2024; 5 Liu (10.1016/j.eswa.2025.128925_bib0039) 2023 Kwabena Patrick (10.1016/j.eswa.2025.128925_bib0034) 2022; 34 Gemaque (10.1016/j.eswa.2025.128925_bib0023) 2020; 10 Street (10.1016/j.eswa.2025.128925_bib0058) 2001 Newey (10.1016/j.eswa.2025.128925_bib0043) 1994; 4 Wang (10.1016/j.eswa.2025.128925_bib0065) 2014; 103 10.1016/j.eswa.2025.128925_bib0008 Castillo (10.1016/j.eswa.2025.128925_bib0011) 2006 Agrawal (10.1016/j.eswa.2025.128925_bib0003) 1991; 5 Uzlaner (10.1016/j.eswa.2025.128925_bib0060) 2025 Frías-Blanco (10.1016/j.eswa.2025.128925_bib0019) 2015; 27 Fernando Panicachi Cocovilo Filho (10.1016/j.eswa.2025.128925_bib0018) 2024; 66 Krawczyk (10.1016/j.eswa.2025.128925_bib0032) 2017; 37 Kullback (10.1016/j.eswa.2025.128925_bib0033) 1951; 22 Palli (10.1016/j.eswa.2025.128925_bib0044) 2022; 12 Li (10.1016/j.eswa.2025.128925_bib0035) 2022; 143 Greco (10.1016/j.eswa.2025.128925_bib0025) 2024; 27 Priya (10.1016/j.eswa.2025.128925_bib0050) 2021 Aroian (10.1016/j.eswa.2025.128925_bib0004) 1950; 45 Cao (10.1016/j.eswa.2025.128925_bib0010) 2025; 625 Guo (10.1016/j.eswa.2025.128925_bib0026) 2025; 711 Bornschein (10.1016/j.eswa.2025.128925_bib0009) 2023 |
| References_xml | – volume: 608 start-page: 996 year: 2022 end-page: 1009 ident: bib0068 article-title: Meta-ADD: A meta-learning based pre-trained model for concept drift active detection publication-title: Information Sciences – start-page: 1 year: 2022 end-page: 6 ident: bib0002 article-title: Faudigpro: A machine learning based fault diagnosis and prognosis system for electrocardiogram sensors publication-title: 2022 International conference on maintenance and intelligent asset management (ICMIAM) – volume: 37 start-page: 132 year: 2017 end-page: 156 ident: bib0032 article-title: Ensemble learning for data stream analysis: A survey publication-title: Information Fusion – volume: 34 start-page: 1295 year: 2022 end-page: 1310 ident: bib0034 article-title: Capsule networks — A survey publication-title: Journal of King Saud University - Computer and Information Sciences – volume: 19 start-page: 462 year: 2013 end-page: 483 ident: bib0057 article-title: Concept drift detection and model selection with simulated recurrence and ensembles of statistical detectors publication-title: Journal of Universal Computer Science – volume: 103 start-page: 45 year: 2014 end-page: 54 ident: bib0065 article-title: A real-time prognostic method for the drift errors in the inertial navigation system by a nonlinear random-coefficient regression model publication-title: Acta Astronautica – year: 2023 ident: bib0009 article-title: Sequential learning of neural networks for prequential MDL publication-title: The eleventh international conference on learning representations – volume: 27 start-page: 806 year: 2024 end-page: 809 ident: bib0025 article-title: Driftlens: A concept drift detection tool publication-title: Advances in database technology – volume: 75 start-page: 1827 year: 2023 end-page: 1845 ident: bib0045 article-title: Combined effect of concept drift and class imbalance on model performance during stream classification publication-title: CMC-COMPUTERS MATERIALS & CONTINUA – volume: 610 start-page: 1 year: 2022 end-page: 13 ident: bib0069 article-title: Spiking capsnet: A spiking neural network with a biologically plausible routing rule between capsules publication-title: Information Sciences – volume: 6 start-page: 77 year: 2006 end-page: 86 ident: bib0005 article-title: Early drift detection method publication-title: Fourth international workshop on knowledge discovery from data streams – volume: 66 start-page: 723 year: 2024 end-page: 763 ident: bib0018 article-title: Evaluating the impact of drift detection mechanisms on stock market forecasting publication-title: Knowledge and Information Systems – start-page: 97 year: 2001 end-page: 106 ident: bib0029 article-title: Mining time-changing data streams publication-title: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining – volume: 416 start-page: 340 year: 2020 end-page: 351 ident: bib0051 article-title: Reactive soft prototype computing for concept drift streams publication-title: Neurocomputing – year: 2018 ident: bib0028 article-title: Matrix capsules with EM routing publication-title: International conference on learning representations – volume: 75 start-page: 494 year: 2019 end-page: 507 ident: bib0040 article-title: Meta-cognitive recurrent recursive kernel OS-ELM for concept drift handling publication-title: Applied Soft Computing – volume: 18 start-page: 912 year: 2021 end-page: 921 ident: bib0070 article-title: Cnn-rnn based intelligent recommendation for online medical pre-diagnosis support publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – volume: 12 year: 2022 ident: bib0031 article-title: Measuring internal inequality in capsule networks for supervised anomaly detection publication-title: Nature – volume: 49 start-page: 546 year: 2019 end-page: 556 ident: bib0022 article-title: A study on forecasting electricity production and consumption in smart cities and factories publication-title: International Journal of Information Management – volume: 33 start-page: 289 year: 2019 end-page: 306 ident: bib0056 article-title: How many ways can we define online learning? a systematic literature review of definitions of online learning (1988-2018) publication-title: American Journal of Distance Education – volume: 34 start-page: 9523 year: 2022 end-page: 9540 ident: bib0001 article-title: Concept drift detection in data stream mining : A literature review publication-title: Journal of King Saud University - Computer and Information Sciences – start-page: 1545 year: 2016 end-page: 1554 ident: bib0052 article-title: Fast unsupervised online drift detection using incremental kolmogorov-smirnov test publication-title: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining – start-page: 1 year: 2021 end-page: 17 ident: bib0050 article-title: Deep learning framework for handling concept drift and class imbalanced complex decision-making on streaming data publication-title: Complex & Intelligent Systems – reference: Bifet, A., & Gavaldà, R. (2007). Learning from time-changing data with adaptive windowing. In Proceedings of the 2007 SIAM International Conference on Data Mining (SDM), pp. 443–448). – volume: 41 start-page: 8144 year: 2014 end-page: 8156 ident: bib0024 article-title: A comparative study on concept drift detectors publication-title: Expert Systems with Applications – volume: 27 start-page: 6805 year: 2024 end-page: 6822 ident: bib0049 article-title: FBDD: Feature-based drift detector for batch processing data publication-title: Cluster Computing – volume: 27 start-page: 810 year: 2015 end-page: 823 ident: bib0019 article-title: Online and non-parametric drift detection methods based on hoeffding’s bounds publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 536 start-page: 391 year: 2020 end-page: 408 ident: bib0036 article-title: Dynamical analysis of rumor spreading model in multi-lingual environment and heterogeneous complex networks publication-title: Information Sciences – volume: 22 start-page: 79 year: 1951 end-page: 86 ident: bib0033 article-title: On information and sufficiency publication-title: The Annals of Mathematical Statistics – volume: 58 start-page: 70 year: 2023 ident: bib0007 article-title: Getting a better sense of data drift in dynamic systems: Sequence-based deep learning for monitoring slowly evolving degradation processes publication-title: Engineering Proceedings – volume: 637 year: 2025 ident: bib0042 article-title: Siameseduo++: Active learning from data streams with dual augmented siamese networks publication-title: Neurocomputing – start-page: 286 year: 2004 end-page: 295 ident: bib0020 article-title: Learning with drift detection publication-title: Advances in artificial intelligence – SBIA 2004 – volume: 15 start-page: 710 year: 2022 end-page: 723 ident: bib0064 article-title: Privacy-preserving diverse keyword search and online pre-diagnosis in cloud computing publication-title: IEEE Transactions on Services Computing – volume: 139 year: 2025 ident: bib0013 article-title: Data-driven drift detection and diagnosis framework for predictive maintenance of heterogeneous production processes: Application to a multiple tapping process publication-title: Engineering Applications of Artificial Intelligence – volume: 5 start-page: 92 year: 2024 end-page: 103 ident: bib0030 article-title: Incremental weighted ensemble for data streams with concept drift publication-title: IEEE Transactions on Artificial Intelligence – volume: 625 year: 2025 ident: bib0010 article-title: MPLR-capsnet: A novel capsule network with multi-line parallel features and logical reasoning for occluded pedestrian detection publication-title: Neurocomputing – year: 2025 ident: bib0060 article-title: Asynchronous online adaptation via modular drift detection for deep receivers publication-title: IEEE Transactions on Wireless Communications – volume: 609 start-page: 1318 year: 2022 end-page: 1333 ident: bib0062 article-title: Noise tolerant drift detection method for data stream mining publication-title: Information Sciences – volume: 255 year: 2024 ident: bib0067 article-title: Ossefs: An online semi-supervised ensemble fuzzy system for data streams learning with missing values publication-title: Expert Systems with Applications – volume: 45 start-page: 520 year: 1950 end-page: 529 ident: bib0004 article-title: The effectiveness of quality control charts publication-title: Journal of the American Statistical Association – volume: 30 year: 2017 ident: bib0053 article-title: Dynamic routing between capsules publication-title: Advances in Neural Information Processing Systems – volume: 143 year: 2022 ident: bib0035 article-title: Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism publication-title: Computers in Biology and Medicine – start-page: 377 year: 2001 end-page: 382 ident: bib0058 article-title: A streaming ensemble algorithm (SEA) for large-scale classification publication-title: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining – volume: 290 year: 2024 ident: bib0059 article-title: Entropy-based concept drift detection in information systems publication-title: Knowledge-Based Systems – volume: 711 year: 2025 ident: bib0026 article-title: Adaptive stochastic configuration network based on online active learning for evolving data streams publication-title: Information Sciences – start-page: 1 year: 2018 end-page: 9 ident: bib0048 article-title: Mcdiarmid drift detection methods for evolving data streams publication-title: 2018 International joint conference on neural networks (IJCNN) – volume: 16 start-page: 2072 year: 2023 end-page: 2084 ident: bib0016 article-title: Privacy-preserving online medical prediagnosis training model based on soft-margin SVM publication-title: IEEE Transactions on Services Computing – volume: 52 start-page: 9157 year: 2022 end-page: 9169 ident: bib0015 article-title: Graph convolutional network-based method for fault diagnosis using a hybrid of measurement and prior knowledge publication-title: IEEE Transactions on Cybernetics – reference: Harries, M., Wales, N.S. et al. (1999). Splice-2 comparative evaluation: Electricity pricing. – start-page: 67 year: 2006 end-page: 78 ident: bib0011 article-title: An adaptive prequential learning framework for bayesian network classifiers publication-title: Knowledge discovery in databases: PKDD 2006 – start-page: 163 year: 2023 end-page: 189 ident: bib0039 article-title: Handling concept drift in global time series forecasting publication-title: Forecasting with artificial intelligence: Theory and applications – volume: 4 start-page: 2111 year: 1994 end-page: 2245 ident: bib0043 article-title: Large sample estimation and hypothesis testing publication-title: Handbook of Econometrics – start-page: 87 year: 2023 end-page: 91 ident: bib0038 article-title: Capsnet-based drift detection in data stream mining publication-title: Proceedings of the 2023 5th international conference on pattern recognition and intelligent systems – volume: 90 start-page: 317 year: 2013 end-page: 346 ident: bib0021 article-title: On evaluating stream learning algorithms publication-title: Machine Learning – volume: 33 start-page: 698 year: 2019 end-page: 729 ident: bib0012 article-title: Spatial autocorrelation and entropy for renewable energy forecasting publication-title: Data Mining and Knowledge Discovery – volume: 275 year: 2023 ident: bib0061 article-title: Model-centric transfer learning framework for concept drift detection publication-title: Knowledge-Based Systems – volume: 202 start-page: 143 year: 2023 end-page: 153 ident: bib0066 article-title: The fault frequency priors fusion deep learning framework with application to fault diagnosis of offshore wind turbines publication-title: Renewable Energy – volume: 148 year: 2024 ident: bib0014 article-title: Global routing between capsules publication-title: Pattern Recognition – volume: 31 start-page: 2346 year: 2019 end-page: 2363 ident: bib0041 article-title: Learning under concept drift: A review publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 10 year: 2020 ident: bib0046 article-title: Microseismic records classification using capsule network with limited training samples in underground mining publication-title: Nature Scientific Reports – volume: 15 year: 2025 ident: bib0037 article-title: Interpretable capsule networks via self attention routing on spatially invariant feature surfaces publication-title: Scientific Reports – reference: . – volume: 712 year: 2025 ident: bib0017 article-title: Zilean: A modularized framework for large-scale temporal concept drift type classification publication-title: Information Sciences – volume: 238 year: 2024 ident: bib0063 article-title: QuadCDD: A quadruple-based approach for understanding concept drift in data streams publication-title: Expert Systems with Applications – volume: 10 start-page: 1 year: 2020 end-page: 18 ident: bib0023 article-title: An overview of unsupervised drift detection methods publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 12 year: 2022 ident: bib0044 article-title: An experimental analysis of drift detection methods on multi-class imbalanced data streams publication-title: Applied Sciences – volume: 5 start-page: 914 year: 1991 end-page: 925 ident: bib0003 article-title: Database mining: A performance perspective publication-title: IEEE Transaction On Knowledge and Data Engg – volume: 13 start-page: 37690 year: 2025 end-page: 37702 ident: bib0006 article-title: Alexcapsnet: An integrated architecture for image classification with background noise publication-title: IEEE Access – volume: 7 start-page: 134 year: 2021 end-page: 140 ident: bib0055 article-title: Fault prediagnosis of power electronic devices in urban new energy system publication-title: Energy Reports – volume: 617 year: 2025 ident: bib0054 article-title: Novelty-aware concept drift detection for neural networks publication-title: Neurocomputing – volume: 13 start-page: 61109 year: 2025 end-page: 61121 ident: bib0047 article-title: A comparison of approaches for handling concept drifts in data processed with machine learning publication-title: IEEE Access – volume: 5 start-page: 914 issue: 6 year: 1991 ident: 10.1016/j.eswa.2025.128925_bib0003 article-title: Database mining: A performance perspective publication-title: IEEE Transaction On Knowledge and Data Engg doi: 10.1109/69.250074 – volume: 12 year: 2022 ident: 10.1016/j.eswa.2025.128925_bib0031 article-title: Measuring internal inequality in capsule networks for supervised anomaly detection publication-title: Nature – volume: 610 start-page: 1 year: 2022 ident: 10.1016/j.eswa.2025.128925_bib0069 article-title: Spiking capsnet: A spiking neural network with a biologically plausible routing rule between capsules publication-title: Information Sciences doi: 10.1016/j.ins.2022.07.152 – volume: 33 start-page: 289 issue: 4 year: 2019 ident: 10.1016/j.eswa.2025.128925_bib0056 article-title: How many ways can we define online learning? a systematic literature review of definitions of online learning (1988-2018) publication-title: American Journal of Distance Education doi: 10.1080/08923647.2019.1663082 – volume: 18 start-page: 912 issue: 3 year: 2021 ident: 10.1016/j.eswa.2025.128925_bib0070 article-title: Cnn-rnn based intelligent recommendation for online medical pre-diagnosis support publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2020.2994780 – volume: 49 start-page: 546 year: 2019 ident: 10.1016/j.eswa.2025.128925_bib0022 article-title: A study on forecasting electricity production and consumption in smart cities and factories publication-title: International Journal of Information Management doi: 10.1016/j.ijinfomgt.2019.01.006 – start-page: 87 year: 2023 ident: 10.1016/j.eswa.2025.128925_bib0038 article-title: Capsnet-based drift detection in data stream mining – volume: 41 start-page: 8144 issue: 18 year: 2014 ident: 10.1016/j.eswa.2025.128925_bib0024 article-title: A comparative study on concept drift detectors publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.07.019 – volume: 617 year: 2025 ident: 10.1016/j.eswa.2025.128925_bib0054 article-title: Novelty-aware concept drift detection for neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.128933 – volume: 103 start-page: 45 year: 2014 ident: 10.1016/j.eswa.2025.128925_bib0065 article-title: A real-time prognostic method for the drift errors in the inertial navigation system by a nonlinear random-coefficient regression model publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2014.06.034 – volume: 45 start-page: 520 issue: 252 year: 1950 ident: 10.1016/j.eswa.2025.128925_bib0004 article-title: The effectiveness of quality control charts publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1950.10501143 – volume: 10 year: 2020 ident: 10.1016/j.eswa.2025.128925_bib0046 article-title: Microseismic records classification using capsule network with limited training samples in underground mining publication-title: Nature Scientific Reports – volume: 238 year: 2024 ident: 10.1016/j.eswa.2025.128925_bib0063 article-title: QuadCDD: A quadruple-based approach for understanding concept drift in data streams publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.122114 – volume: 202 start-page: 143 year: 2023 ident: 10.1016/j.eswa.2025.128925_bib0066 article-title: The fault frequency priors fusion deep learning framework with application to fault diagnosis of offshore wind turbines publication-title: Renewable Energy doi: 10.1016/j.renene.2022.11.064 – volume: 58 start-page: 70 issue: 1 year: 2023 ident: 10.1016/j.eswa.2025.128925_bib0007 article-title: Getting a better sense of data drift in dynamic systems: Sequence-based deep learning for monitoring slowly evolving degradation processes publication-title: Engineering Proceedings – volume: 27 start-page: 810 issue: 3 year: 2015 ident: 10.1016/j.eswa.2025.128925_bib0019 article-title: Online and non-parametric drift detection methods based on hoeffding’s bounds publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2014.2345382 – volume: 12 issue: 22 year: 2022 ident: 10.1016/j.eswa.2025.128925_bib0044 article-title: An experimental analysis of drift detection methods on multi-class imbalanced data streams publication-title: Applied Sciences doi: 10.3390/app122211688 – volume: 290 year: 2024 ident: 10.1016/j.eswa.2025.128925_bib0059 article-title: Entropy-based concept drift detection in information systems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2024.111596 – volume: 22 start-page: 79 issue: 1 year: 1951 ident: 10.1016/j.eswa.2025.128925_bib0033 article-title: On information and sufficiency publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177729694 – volume: 31 start-page: 2346 issue: 12 year: 2019 ident: 10.1016/j.eswa.2025.128925_bib0041 article-title: Learning under concept drift: A review publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 2018 ident: 10.1016/j.eswa.2025.128925_bib0028 article-title: Matrix capsules with EM routing – ident: 10.1016/j.eswa.2025.128925_bib0008 doi: 10.1137/1.9781611972771.42 – volume: 16 start-page: 2072 issue: 3 year: 2023 ident: 10.1016/j.eswa.2025.128925_bib0016 article-title: Privacy-preserving online medical prediagnosis training model based on soft-margin SVM publication-title: IEEE Transactions on Services Computing – volume: 5 start-page: 92 issue: 1 year: 2024 ident: 10.1016/j.eswa.2025.128925_bib0030 article-title: Incremental weighted ensemble for data streams with concept drift publication-title: IEEE Transactions on Artificial Intelligence doi: 10.1109/TAI.2022.3224416 – volume: 7 start-page: 134 year: 2021 ident: 10.1016/j.eswa.2025.128925_bib0055 article-title: Fault prediagnosis of power electronic devices in urban new energy system publication-title: Energy Reports doi: 10.1016/j.egyr.2021.08.064 – volume: 27 start-page: 806 year: 2024 ident: 10.1016/j.eswa.2025.128925_bib0025 article-title: Driftlens: A concept drift detection tool – volume: 712 year: 2025 ident: 10.1016/j.eswa.2025.128925_bib0017 article-title: Zilean: A modularized framework for large-scale temporal concept drift type classification publication-title: Information Sciences doi: 10.1016/j.ins.2025.122134 – year: 2025 ident: 10.1016/j.eswa.2025.128925_bib0060 article-title: Asynchronous online adaptation via modular drift detection for deep receivers publication-title: IEEE Transactions on Wireless Communications doi: 10.1109/TWC.2025.3533959 – volume: 416 start-page: 340 year: 2020 ident: 10.1016/j.eswa.2025.128925_bib0051 article-title: Reactive soft prototype computing for concept drift streams publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.111 – volume: 37 start-page: 132 year: 2017 ident: 10.1016/j.eswa.2025.128925_bib0032 article-title: Ensemble learning for data stream analysis: A survey publication-title: Information Fusion doi: 10.1016/j.inffus.2017.02.004 – volume: 275 year: 2023 ident: 10.1016/j.eswa.2025.128925_bib0061 article-title: Model-centric transfer learning framework for concept drift detection publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2023.110705 – volume: 34 start-page: 1295 issue: 1 year: 2022 ident: 10.1016/j.eswa.2025.128925_bib0034 article-title: Capsule networks — A survey publication-title: Journal of King Saud University - Computer and Information Sciences doi: 10.1016/j.jksuci.2019.09.014 – volume: 139 year: 2025 ident: 10.1016/j.eswa.2025.128925_bib0013 article-title: Data-driven drift detection and diagnosis framework for predictive maintenance of heterogeneous production processes: Application to a multiple tapping process publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2024.109552 – volume: 711 year: 2025 ident: 10.1016/j.eswa.2025.128925_bib0026 article-title: Adaptive stochastic configuration network based on online active learning for evolving data streams publication-title: Information Sciences doi: 10.1016/j.ins.2025.122113 – volume: 536 start-page: 391 year: 2020 ident: 10.1016/j.eswa.2025.128925_bib0036 article-title: Dynamical analysis of rumor spreading model in multi-lingual environment and heterogeneous complex networks publication-title: Information Sciences doi: 10.1016/j.ins.2020.05.037 – volume: 143 year: 2022 ident: 10.1016/j.eswa.2025.128925_bib0035 article-title: Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.105303 – volume: 90 start-page: 317 year: 2013 ident: 10.1016/j.eswa.2025.128925_bib0021 article-title: On evaluating stream learning algorithms publication-title: Machine Learning doi: 10.1007/s10994-012-5320-9 – volume: 609 start-page: 1318 year: 2022 ident: 10.1016/j.eswa.2025.128925_bib0062 article-title: Noise tolerant drift detection method for data stream mining publication-title: Information Sciences doi: 10.1016/j.ins.2022.07.065 – volume: 66 start-page: 723 issue: 1 year: 2024 ident: 10.1016/j.eswa.2025.128925_bib0018 article-title: Evaluating the impact of drift detection mechanisms on stock market forecasting publication-title: Knowledge and Information Systems doi: 10.1007/s10115-023-02025-y – start-page: 377 year: 2001 ident: 10.1016/j.eswa.2025.128925_bib0058 article-title: A streaming ensemble algorithm (SEA) for large-scale classification – volume: 608 start-page: 996 year: 2022 ident: 10.1016/j.eswa.2025.128925_bib0068 article-title: Meta-ADD: A meta-learning based pre-trained model for concept drift active detection publication-title: Information Sciences doi: 10.1016/j.ins.2022.07.022 – volume: 33 start-page: 698 issue: 3 year: 2019 ident: 10.1016/j.eswa.2025.128925_bib0012 article-title: Spatial autocorrelation and entropy for renewable energy forecasting publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-018-0605-7 – volume: 13 start-page: 37690 year: 2025 ident: 10.1016/j.eswa.2025.128925_bib0006 article-title: Alexcapsnet: An integrated architecture for image classification with background noise publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3544661 – volume: 52 start-page: 9157 issue: 9 year: 2022 ident: 10.1016/j.eswa.2025.128925_bib0015 article-title: Graph convolutional network-based method for fault diagnosis using a hybrid of measurement and prior knowledge publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2021.3059002 – volume: 19 start-page: 462 year: 2013 ident: 10.1016/j.eswa.2025.128925_bib0057 article-title: Concept drift detection and model selection with simulated recurrence and ensembles of statistical detectors publication-title: Journal of Universal Computer Science – start-page: 1545 year: 2016 ident: 10.1016/j.eswa.2025.128925_bib0052 article-title: Fast unsupervised online drift detection using incremental kolmogorov-smirnov test – year: 2023 ident: 10.1016/j.eswa.2025.128925_bib0009 article-title: Sequential learning of neural networks for prequential MDL – start-page: 97 year: 2001 ident: 10.1016/j.eswa.2025.128925_bib0029 article-title: Mining time-changing data streams – volume: 27 start-page: 6805 issue: 5 year: 2024 ident: 10.1016/j.eswa.2025.128925_bib0049 article-title: FBDD: Feature-based drift detector for batch processing data publication-title: Cluster Computing doi: 10.1007/s10586-024-04284-y – start-page: 286 year: 2004 ident: 10.1016/j.eswa.2025.128925_bib0020 article-title: Learning with drift detection – volume: 6 start-page: 77 year: 2006 ident: 10.1016/j.eswa.2025.128925_bib0005 article-title: Early drift detection method – volume: 34 start-page: 9523 issue: 10, Part B year: 2022 ident: 10.1016/j.eswa.2025.128925_bib0001 article-title: Concept drift detection in data stream mining : A literature review publication-title: Journal of King Saud University - Computer and Information Sciences doi: 10.1016/j.jksuci.2021.11.006 – volume: 148 year: 2024 ident: 10.1016/j.eswa.2025.128925_bib0014 article-title: Global routing between capsules publication-title: Pattern Recognition doi: 10.1016/j.patcog.2023.110142 – volume: 10 start-page: 1 issue: 6 year: 2020 ident: 10.1016/j.eswa.2025.128925_bib0023 article-title: An overview of unsupervised drift detection methods publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 4 start-page: 2111 year: 1994 ident: 10.1016/j.eswa.2025.128925_bib0043 article-title: Large sample estimation and hypothesis testing publication-title: Handbook of Econometrics doi: 10.1016/S1573-4412(05)80005-4 – volume: 15 issue: 1 year: 2025 ident: 10.1016/j.eswa.2025.128925_bib0037 article-title: Interpretable capsule networks via self attention routing on spatially invariant feature surfaces publication-title: Scientific Reports – volume: 75 start-page: 1827 issue: 1 year: 2023 ident: 10.1016/j.eswa.2025.128925_bib0045 article-title: Combined effect of concept drift and class imbalance on model performance during stream classification publication-title: CMC-COMPUTERS MATERIALS & CONTINUA doi: 10.32604/cmc.2023.033934 – ident: 10.1016/j.eswa.2025.128925_bib0027 – volume: 255 year: 2024 ident: 10.1016/j.eswa.2025.128925_bib0067 article-title: Ossefs: An online semi-supervised ensemble fuzzy system for data streams learning with missing values publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2024.124695 – volume: 625 year: 2025 ident: 10.1016/j.eswa.2025.128925_bib0010 article-title: MPLR-capsnet: A novel capsule network with multi-line parallel features and logical reasoning for occluded pedestrian detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2025.129595 – volume: 637 year: 2025 ident: 10.1016/j.eswa.2025.128925_bib0042 article-title: Siameseduo++: Active learning from data streams with dual augmented siamese networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2025.130083 – start-page: 1 year: 2018 ident: 10.1016/j.eswa.2025.128925_bib0048 article-title: Mcdiarmid drift detection methods for evolving data streams – start-page: 163 year: 2023 ident: 10.1016/j.eswa.2025.128925_bib0039 article-title: Handling concept drift in global time series forecasting – volume: 75 start-page: 494 year: 2019 ident: 10.1016/j.eswa.2025.128925_bib0040 article-title: Meta-cognitive recurrent recursive kernel OS-ELM for concept drift handling publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.11.006 – volume: 13 start-page: 61109 year: 2025 ident: 10.1016/j.eswa.2025.128925_bib0047 article-title: A comparison of approaches for handling concept drifts in data processed with machine learning publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3557229 – volume: 30 year: 2017 ident: 10.1016/j.eswa.2025.128925_bib0053 article-title: Dynamic routing between capsules publication-title: Advances in Neural Information Processing Systems – start-page: 67 year: 2006 ident: 10.1016/j.eswa.2025.128925_bib0011 article-title: An adaptive prequential learning framework for bayesian network classifiers – volume: 15 start-page: 710 issue: 2 year: 2022 ident: 10.1016/j.eswa.2025.128925_bib0064 article-title: Privacy-preserving diverse keyword search and online pre-diagnosis in cloud computing publication-title: IEEE Transactions on Services Computing doi: 10.1109/TSC.2019.2959775 – start-page: 1 year: 2022 ident: 10.1016/j.eswa.2025.128925_bib0002 article-title: Faudigpro: A machine learning based fault diagnosis and prognosis system for electrocardiogram sensors – start-page: 1 year: 2021 ident: 10.1016/j.eswa.2025.128925_bib0050 article-title: Deep learning framework for handling concept drift and class imbalanced complex decision-making on streaming data publication-title: Complex & Intelligent Systems |
| SSID | ssj0017007 |
| Score | 2.4819841 |
| Snippet | •Drift prognosis aims to detect a coming drift, but lacks research.•We propose a drift prognosis algorithm (DR-DD) of capsule neural network.•We tailor... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 128925 |
| SubjectTerms | Capsule networks Data stream mining Drift detection |
| Title | A dynamic routing algorithm of CapsNet for drift prognosis |
| URI | https://dx.doi.org/10.1016/j.eswa.2025.128925 |
| Volume | 296 |
| WOSCitedRecordID | wos001534243000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017007 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELbYlsNeeC0ryks-7K1KFZyYJNwqBAKEKrSAtrco8QOCIKmSFPj5jGM7LewKAdJeosiKHWs-y54Zz8yH0C8uqJSAu8OF8B04IbiTMjd1GPUZFTIFpa5B-jwYjcLxOLowxIlVQycQ5Hn4_BxN_ivU0AZgq9TZT8DdDgoN8A6gwxNgh-eHgB_2uWaZ75fFtAlqTu5vijKrbx90MtakGom6CS_kZSbrJkQrL6qseuWlVyWQa1Po2abAzV12t4E8hu9dFUK4acNxdCPs3PdZu_j-FEVDEG0DgPu_B_MuB9K4HHTSpfaD2VyYWeCRdigGALbm3LF7K9F0tX_t09plcDcQ1ZMq_kToAM7JSKdAv6l_fakGVuOCsgbWLPG_oS4JaBR2UHd4ejQ-ay-NAldnx9uJmBwpHc739k__1kPmdIurFbRkjAI81GCuogWRr6FlS7iBzf77Ax0MscEWG2xxiy0uJDbYYsAWN9jiFtt1dH18dHV44hjyC4cR6tUOT7hLxT4RoAQnvoSZR17iyoARVTGIMTgYuB-lXpqCzhh4ezLhKWVghOwnrgCl3_uJOnmRiw2E4fuUgB1MwyAB-51HoU9cKiOurlAT5vVQ34oinugaJ7EN_ruLleBiJbhYC66HqJVWbLQ0rX3FAO47_Ta_2G8LfZ-twW3Uqcup2EGL7LHOqnLXrIEXl-dhSA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+routing+algorithm+of+CapsNet+for+drift+prognosis&rft.jtitle=Expert+systems+with+applications&rft.au=Lin%2C+Borong&rft.au=Jin%2C+Nanlin&rft.au=Woodward%2C+John+R.&rft.date=2026-01-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=296&rft_id=info:doi/10.1016%2Fj.eswa.2025.128925&rft.externalDocID=S0957417425025424 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |