Flotilla: A scalable, modular and resilient federated learning framework for heterogeneous resources
With the recent improvements in mobile and edge computing and rising concerns of data privacy, Federated Learning (FL) has rapidly gained popularity as a privacy-preserving, distributed machine learning methodology. Several FL frameworks have been built for testing novel FL strategies. However, most...
Uložené v:
| Vydané v: | Journal of parallel and distributed computing Ročník 203; s. 105103 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.09.2025
|
| Predmet: | |
| ISSN: | 0743-7315 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!