A hybrid genetic tabu search algorithm for metro crew scheduling based on a space-time-state network

The crew scheduling problem is highly important for the operation and management of urban rail transit. It is essential to reasonably design an approach for optimizing the crew schedule within the constraints of a provided train diagram so that the schedule is highly versatile and can meet the actua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 182; S. 113574
Hauptverfasser: Xue, Feng, Liang, Peng, Yang, Ying, Wang, Jincheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.10.2025
Schlagworte:
ISSN:1568-4946
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The crew scheduling problem is highly important for the operation and management of urban rail transit. It is essential to reasonably design an approach for optimizing the crew schedule within the constraints of a provided train diagram so that the schedule is highly versatile and can meet the actual operational demand. Additionally, better results can be achieved by using an optimization method, which can reduce operating costs and satisfy crew members’ working preferences to the greatest extent possible to achieve a more rational distribution of tasks. Unlike traditional space-time networks that merely describe spatiotemporal movement trajectories, this study innovatively introduces state attributes to ensure solution feasibility during search. Using these attributes, we establish a space-time-state network for crew scheduling modeling. This model has the objective of reducing task connection time and personnel costs. To solve the provided model, a hybrid genetic tabu search (HGTS) algorithm is created by considering the distinctive characteristics of two methods: tabu search (TS) and genetic algorithm (GA), where TS handles local search and GA performs global optimization. The HGTS algorithm can efficiently address the complex metro crew scheduling problem and obtain an improved crew scheduling plan. The proposed method is validated against data from Chengdu Metro Line 5. Results demonstrate that our constructed methodology can effectively reduce the personnel costs and connection time of crew scheduling over the manual scheduling plan: a total of 148 crew duties were obtained, with an optimization rate of 10.30 % and a total connection time of 198 h 44 min 49 s, with an optimization rate of 7.71 %. Furthermore, the proposed method has a higher computational speed and enhanced stability than the shortest-path faster algorithm based on the greedy approach (G-SPFA) method, especially for large-scale data. Additionally, as a hybrid algorithm, HGTS delivers superior solutions compared to standalone GA and TS. This advantage is evidenced by key metrics: HGTS achieved a total duty duration of 725 h 31 min 51 s versus GA's 778 h 38 min 10 s and TS's 749 h 11 min 31 s, while also demonstrating tighter crew efficiency with standard deviations of 0.067, 0.077, and 0.085 for HGTS, GA, and TS respectively. •HGTS customized for urban rail crew scheduling with strict cumulative constraints.•Novel space-time-state network framework ensures global feasibility of crew duties, overcoming traditional model limits.•Benchmarking vs GA, TS, G-SPFA shows HGTS superiority in crew efficiency, schedule stability, & computational speed.•Method shows good optimization performance and fast computational speed under large-scale data.
AbstractList The crew scheduling problem is highly important for the operation and management of urban rail transit. It is essential to reasonably design an approach for optimizing the crew schedule within the constraints of a provided train diagram so that the schedule is highly versatile and can meet the actual operational demand. Additionally, better results can be achieved by using an optimization method, which can reduce operating costs and satisfy crew members’ working preferences to the greatest extent possible to achieve a more rational distribution of tasks. Unlike traditional space-time networks that merely describe spatiotemporal movement trajectories, this study innovatively introduces state attributes to ensure solution feasibility during search. Using these attributes, we establish a space-time-state network for crew scheduling modeling. This model has the objective of reducing task connection time and personnel costs. To solve the provided model, a hybrid genetic tabu search (HGTS) algorithm is created by considering the distinctive characteristics of two methods: tabu search (TS) and genetic algorithm (GA), where TS handles local search and GA performs global optimization. The HGTS algorithm can efficiently address the complex metro crew scheduling problem and obtain an improved crew scheduling plan. The proposed method is validated against data from Chengdu Metro Line 5. Results demonstrate that our constructed methodology can effectively reduce the personnel costs and connection time of crew scheduling over the manual scheduling plan: a total of 148 crew duties were obtained, with an optimization rate of 10.30 % and a total connection time of 198 h 44 min 49 s, with an optimization rate of 7.71 %. Furthermore, the proposed method has a higher computational speed and enhanced stability than the shortest-path faster algorithm based on the greedy approach (G-SPFA) method, especially for large-scale data. Additionally, as a hybrid algorithm, HGTS delivers superior solutions compared to standalone GA and TS. This advantage is evidenced by key metrics: HGTS achieved a total duty duration of 725 h 31 min 51 s versus GA's 778 h 38 min 10 s and TS's 749 h 11 min 31 s, while also demonstrating tighter crew efficiency with standard deviations of 0.067, 0.077, and 0.085 for HGTS, GA, and TS respectively. •HGTS customized for urban rail crew scheduling with strict cumulative constraints.•Novel space-time-state network framework ensures global feasibility of crew duties, overcoming traditional model limits.•Benchmarking vs GA, TS, G-SPFA shows HGTS superiority in crew efficiency, schedule stability, & computational speed.•Method shows good optimization performance and fast computational speed under large-scale data.
ArticleNumber 113574
Author Wang, Jincheng
Xue, Feng
Liang, Peng
Yang, Ying
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0001-8556-8735
  surname: Xue
  fullname: Xue, Feng
  email: xuefeng.7@swjtu.edu.cn
  organization: School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, 611756, China
– sequence: 2
  givenname: Peng
  orcidid: 0009-0002-8915-6580
  surname: Liang
  fullname: Liang, Peng
  organization: School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, 611756, China
– sequence: 3
  givenname: Ying
  orcidid: 0009-0002-5558-7390
  surname: Yang
  fullname: Yang, Ying
  organization: School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, 611756, China
– sequence: 4
  givenname: Jincheng
  surname: Wang
  fullname: Wang, Jincheng
  organization: School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, 611756, China
BookMark eNp9kL1uwyAUhRlSqUnaF-jEC9gFjLGRukRR_6RIXdoZYbjEpLGJgDTK29dROne6w7nf0dG3QLMxjIDQAyUlJVQ87kqdgikZYXVJaVU3fIbmtBZtwSUXt2iR0o5Mj5K1c2RXuD930Vu8hRGyNzjr7ogT6Gh6rPfbEH3uB-xCxAPkGLCJcMLJ9GCPez9ucacTWBxGrHE6aANF9gMUKesMeGo8hfh9h26c3ie4_7tL9PXy_Ll-KzYfr-_r1aYwrK5y0ThJWtJaAQANJ0ZoWhEnRAtEWkIkq1qpua0lOJjitqHMcOZ4Ddayjrlqidi118SQUgSnDtEPOp4VJeriRu3UxY26uFFXNxP0dIVgWvbjIapkPIwGrI9gsrLB_4f_AoSvciE
Cites_doi 10.1287/trsc.17.1.4
10.1287/opre.1050.0222
10.1007/s10479-006-0017-8
10.1287/inte.20.1.26
10.1016/j.cie.2023.109354
10.1016/j.tre.2020.102132
10.12928/ijio.v1i1.1421
10.1007/s10951-010-0212-y
10.1016/j.trb.2015.08.002
10.1016/j.trb.2024.102941
10.1016/j.tust.2023.105226
10.1007/BF02614314
10.1287/trsc.1040.0091
10.1023/B:ANOR.0000019090.39650.32
10.70470/SHIFRA/2025/004
10.1016/j.disopt.2008.06.001
10.1007/s10951-016-0499-4
10.1016/j.ijpe.2007.11.011
10.70470/KHWARIZMIA/2023/002
10.1016/j.ijpe.2016.01.016
10.1007/s12599-017-0470-8
10.1007/s10479-014-1619-1
10.1016/j.trc.2023.104081
10.1016/S0305-0548(98)00019-7
10.1109/ACCESS.2019.2900028
10.1016/j.ejor.2019.06.016
10.1016/j.cie.2014.01.002
10.1016/j.ejor.2020.12.058
10.1016/j.jclepro.2020.120590
10.1287/trsc.1100.0322
10.1016/j.ejor.2005.10.008
10.1016/j.trc.2022.103832
10.3390/app8122621
10.1016/j.trc.2017.07.008
10.1016/j.trb.2013.08.003
10.1016/j.ejor.2007.10.065
10.3390/math12121881
10.70470/SHIFRA/2023/003
10.1016/j.ejor.2013.02.055
10.1007/s10732-009-9102-x
10.1287/trsc.1030.0078
10.1016/j.ejor.2020.05.005
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2025.113574
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2025_113574
S1568494625008853
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9DU
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c253t-7f90808d6eee740c6a130f668e09d0092389a4d59efe40c8712c42f45edd2b2f3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001538813500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 06:51:50 EST 2025
Sat Nov 29 17:07:16 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Urban rail transit
Hybrid genetic tabu search algorithm
Crew scheduling
Space-time-state network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-7f90808d6eee740c6a130f668e09d0092389a4d59efe40c8712c42f45edd2b2f3
ORCID 0000-0001-8556-8735
0009-0002-5558-7390
0009-0002-8915-6580
ParticipantIDs crossref_primary_10_1016_j_asoc_2025_113574
elsevier_sciencedirect_doi_10_1016_j_asoc_2025_113574
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Abdulrahman, Niu (bib42) 2023; 2023
Marta, Luís, Isabel (bib30) 2006; 144
Alhamad, Alkhezi (bib47) 2024; 12
Wang, Yuan, Guan, Xu, WANG, Wang, Liu (bib38) 2020; 258
Janis, Martin, Felix, Kirsten, Udo (bib24) 2021; 293
Caprara, Fischetti, Toth, Vigo, Guide (bib2) 1997; 79
Blais, Lamont, Rousseau (bib6) 1990; 20
Vojtech, Dusan, Jiri, Michal (bib12) 2020
Akbar, Aurachmana (bib48) 2020; 1
Caprara, Kroon, Monaci, Peeters, Toth (bib3) 2007; 4
Lin, Tsai (bib23) 2019; 7
Yunes, Moura, Souza (bib28) 2005; 39
Christian, Ulrich (bib19) 2020; 2
Han, Li (bib32) 2014; 223
Boschetti, Mingozzi, Ricciardelli (bib17) 2008
Silke, Daniel, Ulrich (bib20) 2017; 20
Zaepfel, Boegl (bib29) 2008; 113
Salloum, Norozpour (bib43) 2025; 2025
Wang, Chen, Qin, Yang (bib1) 2023; 139
Zhao, Yang, Cao, Sun, Wu (bib55) 2025
Potthoff, Huisman, Desaulniers (bib18) 2010; 44
Kirsten, Udo, Janis, Felix (bib22) 2017; 59
Xue, Liang, Li, Chen, Zhou (bib41) 2022; 9
Zhong, Yang, Zhou (bib50) 2020; 39
Lusby, Larsen, Ehrgott, Ryan (bib4) 2011; 33
Freling, Lentink, Wagelmans (bib5) 2004; 127
Shen, Peng, Chen, Li (bib31) 2013; 56
Panta, Dusan (bib16) 1999; 33
Wen, Ma, Chung, Khan (bib14) 2020; 144
Xu, Yin, Yang, Zheng, Chang, Wu (bib54) 2025
Huang, Wu, Liang (bib51) 2010
Shibghatullah (bib44) 2023; 2023
Janacek, Kohani, Koniorczyk, Marton (bib26) 2017; 83
Christian, Felix, Ulrich (bib21) 2021; 55
Bouni, Roslee, Mitani, Abujawa, Oaman, Ali (bib46) 2025; 2
Hanafi, Kozan (bib15) 2014; 70
Li, Gao (bib49) 2016; 174
Kwan (bib8) 2011; 14
Tong, Zhou, Miller (bib37) 2015; 81
Zhou, Xu, Long, Ding (bib33) 2022; 143
Ball, Bodin, Dial (bib10) 1983; 7
Heil, Hoffmann, Buscher (bib9) 2020; 283
Souai, Teghem (bib40) 2009; 199
Feng, Lusby, Zhang, Tao, Zhang, Peng (bib36) 2024; 183
Xue, Zhang, Hu, Ma, Chen (bib34) 2023; 182
Lučić, Teodorovi (bib39) 1999; 33
Feng, Lusby, Zhang, Peng, Shang, Tao (bib35) 2023; 149
Mesquita, Moz, Paias, Pato (bib52) 2013; 229
Beasley, Cao (bib7) 1998; 25
Andrew, Ellis, Anton, George (bib11) 2005; 39
Elizondo, Parada, Pradenas, Artigues (bib27) 2010; 16
Vahid, Mohammed, François (bib13) 2020; 287
Elhallaoui, Villeneuve, Soumis (bib53) 2005; 53
Sydney (bib25) 2007; 177
Wei, Li, Jiang, Hu (bib45) 2018; 8
Zhou (10.1016/j.asoc.2025.113574_bib33) 2022; 143
Bouni (10.1016/j.asoc.2025.113574_bib46) 2025; 2
Lučić (10.1016/j.asoc.2025.113574_bib39) 1999; 33
Xue (10.1016/j.asoc.2025.113574_bib34) 2023; 182
Janacek (10.1016/j.asoc.2025.113574_bib26) 2017; 83
Souai (10.1016/j.asoc.2025.113574_bib40) 2009; 199
Yunes (10.1016/j.asoc.2025.113574_bib28) 2005; 39
Caprara (10.1016/j.asoc.2025.113574_bib2) 1997; 79
Huang (10.1016/j.asoc.2025.113574_bib51) 2010
Ball (10.1016/j.asoc.2025.113574_bib10) 1983; 7
Li (10.1016/j.asoc.2025.113574_bib49) 2016; 174
Zaepfel (10.1016/j.asoc.2025.113574_bib29) 2008; 113
Shibghatullah (10.1016/j.asoc.2025.113574_bib44) 2023; 2023
Elizondo (10.1016/j.asoc.2025.113574_bib27) 2010; 16
Elhallaoui (10.1016/j.asoc.2025.113574_bib53) 2005; 53
Blais (10.1016/j.asoc.2025.113574_bib6) 1990; 20
Panta (10.1016/j.asoc.2025.113574_bib16) 1999; 33
Lin (10.1016/j.asoc.2025.113574_bib23) 2019; 7
Abdulrahman (10.1016/j.asoc.2025.113574_bib42) 2023; 2023
Zhong (10.1016/j.asoc.2025.113574_bib50) 2020; 39
Tong (10.1016/j.asoc.2025.113574_bib37) 2015; 81
Christian (10.1016/j.asoc.2025.113574_bib21) 2021; 55
Vojtech (10.1016/j.asoc.2025.113574_bib12) 2020
Marta (10.1016/j.asoc.2025.113574_bib30) 2006; 144
Akbar (10.1016/j.asoc.2025.113574_bib48) 2020; 1
Freling (10.1016/j.asoc.2025.113574_bib5) 2004; 127
Kwan (10.1016/j.asoc.2025.113574_bib8) 2011; 14
Mesquita (10.1016/j.asoc.2025.113574_bib52) 2013; 229
Silke (10.1016/j.asoc.2025.113574_bib20) 2017; 20
Zhao (10.1016/j.asoc.2025.113574_bib55) 2025
Xu (10.1016/j.asoc.2025.113574_bib54) 2025
Xue (10.1016/j.asoc.2025.113574_bib41) 2022; 9
Feng (10.1016/j.asoc.2025.113574_bib36) 2024; 183
Caprara (10.1016/j.asoc.2025.113574_bib3) 2007; 4
Alhamad (10.1016/j.asoc.2025.113574_bib47) 2024; 12
Beasley (10.1016/j.asoc.2025.113574_bib7) 1998; 25
Shen (10.1016/j.asoc.2025.113574_bib31) 2013; 56
Hanafi (10.1016/j.asoc.2025.113574_bib15) 2014; 70
Potthoff (10.1016/j.asoc.2025.113574_bib18) 2010; 44
Wen (10.1016/j.asoc.2025.113574_bib14) 2020; 144
Feng (10.1016/j.asoc.2025.113574_bib35) 2023; 149
Heil (10.1016/j.asoc.2025.113574_bib9) 2020; 283
Han (10.1016/j.asoc.2025.113574_bib32) 2014; 223
Wang (10.1016/j.asoc.2025.113574_bib1) 2023; 139
Wei (10.1016/j.asoc.2025.113574_bib45) 2018; 8
Kirsten (10.1016/j.asoc.2025.113574_bib22) 2017; 59
Vahid (10.1016/j.asoc.2025.113574_bib13) 2020; 287
Salloum (10.1016/j.asoc.2025.113574_bib43) 2025; 2025
Wang (10.1016/j.asoc.2025.113574_bib38) 2020; 258
Boschetti (10.1016/j.asoc.2025.113574_bib17) 2008
Lusby (10.1016/j.asoc.2025.113574_bib4) 2011; 33
Sydney (10.1016/j.asoc.2025.113574_bib25) 2007; 177
Andrew (10.1016/j.asoc.2025.113574_bib11) 2005; 39
Janis (10.1016/j.asoc.2025.113574_bib24) 2021; 293
Christian (10.1016/j.asoc.2025.113574_bib19) 2020; 2
References_xml – volume: 16
  start-page: 575
  year: 2010
  end-page: 591
  ident: bib27
  article-title: An evolutionary and constructive approach to a crew scheduling problem in underground passenger transport
  publication-title: J. Heuristics
– volume: 44
  start-page: 493
  year: 2010
  end-page: 505
  ident: bib18
  article-title: Column generation with dynamic duty selection for railway crew rescheduling
  publication-title: Transp. Sci.
– volume: 9
  start-page: 2532
  year: 2022
  end-page: 2540
  ident: bib41
  article-title: Optimization of subway crew scheduling based on shortest path faster algorithm
  publication-title: J. Railw. Sci. Eng.
– volume: 81
  start-page: 555
  year: 2015
  end-page: 576
  ident: bib37
  article-title: Transportation network design for maximizing space–time accessibility
  publication-title: Transp. Res. Part B Methodol.
– volume: 33
  start-page: 19
  year: 1999
  end-page: 45
  ident: bib39
  article-title: Simulated annealing for the multi-objective aircrew rostering problem
  publication-title: Transp. Res. Part A
– volume: 55
  start-page: 1227
  year: 2021
  end-page: 1458
  ident: bib21
  article-title: Robust tactical crew scheduling under uncertain demand
  publication-title: Transp. Sci.
– volume: 83
  start-page: 165
  year: 2017
  end-page: 178
  ident: bib26
  article-title: Optimization of periodic crew schedules with application of column generation method
  publication-title: Transp. Res. Part C.
– volume: 223
  start-page: 173
  year: 2014
  end-page: 193
  ident: bib32
  article-title: A constraint programming-based approach to the crew scheduling problem of the Taipei mass rapid transit system
  publication-title: Ann. Oper. Res.
– volume: 14
  start-page: 423
  year: 2011
  end-page: 434
  ident: bib8
  article-title: Case studies of successful train crew scheduling optimisation
  publication-title: J. Sched.
– volume: 139
  year: 2023
  ident: bib1
  article-title: Timetable escheduling of metro network during the last train period
  publication-title: Tunn. Undergr. Space Technol.
– volume: 8
  start-page: 2621
  year: 2018
  ident: bib45
  article-title: Hybrid genetic simulated annealing algorithm for improved flow shop scheduling with makespan criterion
  publication-title: Appl. Sci.
– volume: 283
  start-page: 405
  year: 2020
  end-page: 425
  ident: bib9
  article-title: Railway crew scheduling: models, methods and applications
  publication-title: Eur. J. Oper. Res.
– volume: 287
  start-page: 211
  year: 2020
  end-page: 224
  ident: bib13
  article-title: Alternating lagrangian decomposition for integrated airline crew scheduling problem
  publication-title: Eur. J. Oper. Res.
– volume: 2023
  start-page: 10
  year: 2023
  end-page: 23
  ident: bib42
  article-title: Multi-objective evolutionary algorithm with decomposition for enhanced community detection in signed networks
  publication-title: Khwarizmia
– volume: 2
  start-page: 835
  year: 2020
  end-page: 862
  ident: bib19
  article-title: Railway crew scheduling with semi flexible timetables
  publication-title: Spectrum
– volume: 258
  year: 2020
  ident: bib38
  article-title: Collaborative two-echelon multicenter vehicle routing optimization based on state–space–time network representation
  publication-title: J. Clean. Prod.
– volume: 20
  start-page: 26
  year: 1990
  end-page: 42
  ident: bib6
  article-title: The HASTUS vehicle and manpower scheduling system at the Société de transport de la Communauté urbaine de Montréal
  publication-title: Interfaces
– volume: 127
  start-page: 203
  year: 2004
  end-page: 222
  ident: bib5
  article-title: A decision support system for crew planning in passenger transportation using a flexible branch-and-price algorithm
  publication-title: Ann. Oper. Res.
– volume: 33
  start-page: 19
  year: 1999
  end-page: 45
  ident: bib16
  article-title: Simulated annealing for the multi-objective aircrew rostering problem
  publication-title: Transp. Res. Part A
– volume: 7
  start-page: 27362
  year: 2019
  end-page: 27375
  ident: bib23
  article-title: Integrated crew scheduling and roster problem for trainmasters of passenger railway transportation
  publication-title: IEEE Access
– volume: 143
  year: 2022
  ident: bib33
  article-title: Metro crew planning with day-off pattern, duty type, and rostering scheme considerations
  publication-title: Transp. Res. Part C.
– volume: 25
  start-page: 567
  year: 1998
  end-page: 582
  ident: bib7
  article-title: A dynamic programming based algorithm for the crew scheduling problem
  publication-title: Comput. Oper. Res.
– start-page: 735
  year: 2008
  end-page: 747
  ident: bib17
  article-title: A dual ascent procedure for the set partitioning problem
  publication-title: Discret. Optim.
– volume: 20
  start-page: 43
  year: 2017
  end-page: 55
  ident: bib20
  article-title: Optimizing railway crew schedules with fairness preferences
  publication-title: J. Sched.
– volume: 182
  year: 2023
  ident: bib34
  article-title: Metro crew planning with heterogeneous duty paths and period-cycle pattern considerations
  publication-title: Comput. Ind. Eng.
– volume: 177
  start-page: 1764
  year: 2007
  end-page: 1778
  ident: bib25
  article-title: Generating, scheduling and rostering of shift crew-duties, applications at the Hong Kong international airport
  publication-title: Eur. J. Oper. Res.
– volume: 113
  start-page: 980
  year: 2008
  end-page: 996
  ident: bib29
  article-title: Multi- period vehicle routing and crew scheduling with outsourcing options
  publication-title: Int. J. Prod. Econ.
– volume: 183
  year: 2024
  ident: bib36
  article-title: A branch-and-price algorithm for integrating urban rail crew scheduling and rostering problems
  publication-title: Transp. Res. Part B Methodol.
– volume: 199
  start-page: 674
  year: 2009
  end-page: 683
  ident: bib40
  article-title: Genetic algorithm based approach for the integrated airline crew-pairing and rostering problem
  publication-title: Eur. J. Oper. Res.
– start-page: 205
  year: 2025
  ident: bib55
  article-title: A synchronous crew scheduling problem with time fairness based on a two-phrase assignment strategy in an urban rail transit network
  publication-title: Comput. Ind. Eng.
– start-page: 5372567
  year: 2020
  ident: bib12
  article-title: Dynamic model for scheduling crew shifts
  publication-title: Math. Probl. Eng.
– start-page: 201
  year: 2025
  ident: bib54
  article-title: Cross-line crew scheduling optimization in urban rail transit systems
  publication-title: Comput. Ind. Eng.
– volume: 4
  start-page: 129
  year: 2007
  end-page: 187
  ident: bib3
  article-title: Chapter 3 passenger railway optimization
  publication-title: Handb. Oper. Res. Manag. Sci.
– volume: 174
  start-page: 93
  year: 2016
  end-page: 110
  ident: bib49
  article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem
  publication-title: Int. J. Prod. Econ.
– volume: 39
  start-page: 1525
  year: 2020
  end-page: 1538
  ident: bib50
  article-title: Application of hybrid GA-PSO based on intelligent control fuzzy system in the integrated scheduling in automated container terminal
  publication-title: J. Intell. Fuzzy Syst.
– volume: 149
  year: 2023
  ident: bib35
  article-title: An ADMM-based dual decomposition mechanism for integrating crew scheduling and rostering in an urban rail transit line
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 293
  start-page: 1113
  year: 2021
  end-page: 1130
  ident: bib24
  article-title: An efficient column generation approach for practical railway crew scheduling with attendance rates
  publication-title: Eur. J. Oper. Res.
– volume: 39
  start-page: 273
  year: 2005
  end-page: 288
  ident: bib28
  article-title: Hybrid column generation approaches for urban transit crew management problems
  publication-title: Transp. Sci.
– volume: 2
  start-page: 2502617
  year: 2025
  ident: bib46
  article-title: A hybrid GA-SA resource allocation scheme enhanced with SINR optimization for NOMA-MIMO systems in 5G networks
  publication-title: Cogent Eng.
– volume: 1
  start-page: 15
  year: 2020
  end-page: 28
  ident: bib48
  article-title: Hybrid genetic–tabu search algorithm to optimize the route for capacitated vehicle routing problem with time window
  publication-title: Int. J. Ind. Optim.
– volume: 56
  start-page: 174
  year: 2013
  end-page: 185
  ident: bib31
  article-title: Evolutionary crew scheduling with adaptive chromosomes
  publication-title: Transp. Res. Part B Methodol.
– volume: 33
  start-page: 843
  year: 2011
  end-page: 883
  ident: bib4
  article-title: Railway track allocation: models and methods
  publication-title: spectrum
– volume: 2025
  start-page: 69
  year: 2025
  end-page: 80
  ident: bib43
  article-title: XAI-IDS: A transparent and interpretable framework for robust cybersecurity using explainable artificial intelligence
  publication-title: Shifra
– volume: 53
  start-page: 632
  year: 2005
  end-page: 645
  ident: bib53
  article-title: Dynamic aggregation of setpartitioning constraints in column generation
  publication-title: Oper. Res.
– volume: 79
  start-page: 125
  year: 1997
  end-page: 141
  ident: bib2
  article-title: Algorithms for railway crew management
  publication-title: Math. Program.
– volume: 144
  start-page: 111
  year: 2006
  end-page: 132
  ident: bib30
  article-title: The crew timetabling problem: an extension of the crew scheduling problem
  publication-title: Ann. Oper. Res.
– volume: 12
  start-page: 1881
  year: 2024
  ident: bib47
  article-title: Hybrid genetic algorithm and tabu search for solving preventive maintenance scheduling for cogeneration plants
  publication-title: Mathematics
– volume: 2023
  start-page: 17
  year: 2023
  end-page: 25
  ident: bib44
  article-title: Mitigating developed persistent threats (APTs) through machine learning-based intrusion detection systems: a comprehensive analysis
  publication-title: Shifra
– start-page: 226
  year: 2010
  end-page: 233
  ident: bib51
  article-title: GA-ACO in job-shop schedule problem research
  publication-title: Computational Intelligence and Intelligent Systems
– volume: 229
  start-page: 318
  year: 2013
  end-page: 331
  ident: bib52
  article-title: A decomposition approach for the integrated vehicle-crew-roster problem with days-off pattern
  publication-title: Eur. J. Oper. Res.
– volume: 144
  year: 2020
  ident: bib14
  article-title: Robust airline crew scheduling with flight flying time variability
  publication-title: Transp. Res. Part E
– volume: 59
  start-page: 147
  year: 2017
  end-page: 159
  ident: bib22
  article-title: Solving practical railway crew scheduling problems with attendance rates
  publication-title: Bus. Inf. Syst. Eng.
– volume: 7
  start-page: 4
  year: 1983
  end-page: 31
  ident: bib10
  article-title: A matching based heuristic for scheduling mass transit crews and vehicles
  publication-title: Transp. Sci.
– volume: 39
  start-page: 340
  year: 2005
  end-page: 348
  ident: bib11
  article-title: Airline crew scheduling under uncertainty
  publication-title: Transp. Sci.
– volume: 70
  start-page: 11
  year: 2014
  end-page: 19
  ident: bib15
  article-title: A hybrid constructive heuristic and simulated annealing for railway crew scheduling
  publication-title: Comput. Ind. Eng.
– volume: 9
  start-page: 2532
  year: 2022
  ident: 10.1016/j.asoc.2025.113574_bib41
  article-title: Optimization of subway crew scheduling based on shortest path faster algorithm
  publication-title: J. Railw. Sci. Eng.
– start-page: 201
  year: 2025
  ident: 10.1016/j.asoc.2025.113574_bib54
  article-title: Cross-line crew scheduling optimization in urban rail transit systems
  publication-title: Comput. Ind. Eng.
– volume: 7
  start-page: 4
  issue: 1
  year: 1983
  ident: 10.1016/j.asoc.2025.113574_bib10
  article-title: A matching based heuristic for scheduling mass transit crews and vehicles
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.17.1.4
– start-page: 226
  year: 2010
  ident: 10.1016/j.asoc.2025.113574_bib51
  article-title: GA-ACO in job-shop schedule problem research
– volume: 53
  start-page: 632
  issue: 4
  year: 2005
  ident: 10.1016/j.asoc.2025.113574_bib53
  article-title: Dynamic aggregation of setpartitioning constraints in column generation
  publication-title: Oper. Res.
  doi: 10.1287/opre.1050.0222
– volume: 144
  start-page: 111
  year: 2006
  ident: 10.1016/j.asoc.2025.113574_bib30
  article-title: The crew timetabling problem: an extension of the crew scheduling problem
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-006-0017-8
– volume: 20
  start-page: 26
  issue: 1
  year: 1990
  ident: 10.1016/j.asoc.2025.113574_bib6
  article-title: The HASTUS vehicle and manpower scheduling system at the Société de transport de la Communauté urbaine de Montréal
  publication-title: Interfaces
  doi: 10.1287/inte.20.1.26
– volume: 182
  year: 2023
  ident: 10.1016/j.asoc.2025.113574_bib34
  article-title: Metro crew planning with heterogeneous duty paths and period-cycle pattern considerations
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2023.109354
– volume: 144
  year: 2020
  ident: 10.1016/j.asoc.2025.113574_bib14
  article-title: Robust airline crew scheduling with flight flying time variability
  publication-title: Transp. Res. Part E
  doi: 10.1016/j.tre.2020.102132
– volume: 1
  start-page: 15
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2025.113574_bib48
  article-title: Hybrid genetic–tabu search algorithm to optimize the route for capacitated vehicle routing problem with time window
  publication-title: Int. J. Ind. Optim.
  doi: 10.12928/ijio.v1i1.1421
– volume: 14
  start-page: 423
  issue: 5
  year: 2011
  ident: 10.1016/j.asoc.2025.113574_bib8
  article-title: Case studies of successful train crew scheduling optimisation
  publication-title: J. Sched.
  doi: 10.1007/s10951-010-0212-y
– volume: 81
  start-page: 555
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2025.113574_bib37
  article-title: Transportation network design for maximizing space–time accessibility
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2015.08.002
– volume: 183
  year: 2024
  ident: 10.1016/j.asoc.2025.113574_bib36
  article-title: A branch-and-price algorithm for integrating urban rail crew scheduling and rostering problems
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2024.102941
– volume: 139
  year: 2023
  ident: 10.1016/j.asoc.2025.113574_bib1
  article-title: Timetable escheduling of metro network during the last train period
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2023.105226
– volume: 79
  start-page: 125
  issue: 1–3
  year: 1997
  ident: 10.1016/j.asoc.2025.113574_bib2
  article-title: Algorithms for railway crew management
  publication-title: Math. Program.
  doi: 10.1007/BF02614314
– volume: 39
  start-page: 340
  issue: 03
  year: 2005
  ident: 10.1016/j.asoc.2025.113574_bib11
  article-title: Airline crew scheduling under uncertainty
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1040.0091
– volume: 127
  start-page: 203
  issue: 1-4
  year: 2004
  ident: 10.1016/j.asoc.2025.113574_bib5
  article-title: A decision support system for crew planning in passenger transportation using a flexible branch-and-price algorithm
  publication-title: Ann. Oper. Res.
  doi: 10.1023/B:ANOR.0000019090.39650.32
– volume: 2025
  start-page: 69
  year: 2025
  ident: 10.1016/j.asoc.2025.113574_bib43
  article-title: XAI-IDS: A transparent and interpretable framework for robust cybersecurity using explainable artificial intelligence
  publication-title: Shifra
  doi: 10.70470/SHIFRA/2025/004
– start-page: 735
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2025.113574_bib17
  article-title: A dual ascent procedure for the set partitioning problem
  publication-title: Discret. Optim.
  doi: 10.1016/j.disopt.2008.06.001
– volume: 4
  start-page: 129
  year: 2007
  ident: 10.1016/j.asoc.2025.113574_bib3
  article-title: Chapter 3 passenger railway optimization
  publication-title: Handb. Oper. Res. Manag. Sci.
– start-page: 205
  year: 2025
  ident: 10.1016/j.asoc.2025.113574_bib55
  article-title: A synchronous crew scheduling problem with time fairness based on a two-phrase assignment strategy in an urban rail transit network
  publication-title: Comput. Ind. Eng.
– volume: 20
  start-page: 43
  year: 2017
  ident: 10.1016/j.asoc.2025.113574_bib20
  article-title: Optimizing railway crew schedules with fairness preferences
  publication-title: J. Sched.
  doi: 10.1007/s10951-016-0499-4
– volume: 33
  start-page: 19
  year: 1999
  ident: 10.1016/j.asoc.2025.113574_bib39
  article-title: Simulated annealing for the multi-objective aircrew rostering problem
  publication-title: Transp. Res. Part A
– start-page: 5372567
  year: 2020
  ident: 10.1016/j.asoc.2025.113574_bib12
  article-title: Dynamic model for scheduling crew shifts
  publication-title: Math. Probl. Eng.
– volume: 2
  start-page: 2502617
  year: 2025
  ident: 10.1016/j.asoc.2025.113574_bib46
  article-title: A hybrid GA-SA resource allocation scheme enhanced with SINR optimization for NOMA-MIMO systems in 5G networks
  publication-title: Cogent Eng.
– volume: 113
  start-page: 980
  issue: 02
  year: 2008
  ident: 10.1016/j.asoc.2025.113574_bib29
  article-title: Multi- period vehicle routing and crew scheduling with outsourcing options
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2007.11.011
– volume: 2023
  start-page: 10
  year: 2023
  ident: 10.1016/j.asoc.2025.113574_bib42
  article-title: Multi-objective evolutionary algorithm with decomposition for enhanced community detection in signed networks
  publication-title: Khwarizmia
  doi: 10.70470/KHWARIZMIA/2023/002
– volume: 174
  start-page: 93
  year: 2016
  ident: 10.1016/j.asoc.2025.113574_bib49
  article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2016.01.016
– volume: 33
  start-page: 19
  year: 1999
  ident: 10.1016/j.asoc.2025.113574_bib16
  article-title: Simulated annealing for the multi-objective aircrew rostering problem
  publication-title: Transp. Res. Part A
– volume: 59
  start-page: 147
  issue: 03
  year: 2017
  ident: 10.1016/j.asoc.2025.113574_bib22
  article-title: Solving practical railway crew scheduling problems with attendance rates
  publication-title: Bus. Inf. Syst. Eng.
  doi: 10.1007/s12599-017-0470-8
– volume: 223
  start-page: 173
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2025.113574_bib32
  article-title: A constraint programming-based approach to the crew scheduling problem of the Taipei mass rapid transit system
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-014-1619-1
– volume: 149
  year: 2023
  ident: 10.1016/j.asoc.2025.113574_bib35
  article-title: An ADMM-based dual decomposition mechanism for integrating crew scheduling and rostering in an urban rail transit line
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2023.104081
– volume: 25
  start-page: 567
  issue: 7-8
  year: 1998
  ident: 10.1016/j.asoc.2025.113574_bib7
  article-title: A dynamic programming based algorithm for the crew scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(98)00019-7
– volume: 2
  start-page: 835
  year: 2020
  ident: 10.1016/j.asoc.2025.113574_bib19
  article-title: Railway crew scheduling with semi flexible timetables
  publication-title: Spectrum
– volume: 7
  start-page: 27362
  year: 2019
  ident: 10.1016/j.asoc.2025.113574_bib23
  article-title: Integrated crew scheduling and roster problem for trainmasters of passenger railway transportation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2900028
– volume: 39
  start-page: 1525
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2025.113574_bib50
  article-title: Application of hybrid GA-PSO based on intelligent control fuzzy system in the integrated scheduling in automated container terminal
  publication-title: J. Intell. Fuzzy Syst.
– volume: 283
  start-page: 405
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2025.113574_bib9
  article-title: Railway crew scheduling: models, methods and applications
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2019.06.016
– volume: 70
  start-page: 11
  year: 2014
  ident: 10.1016/j.asoc.2025.113574_bib15
  article-title: A hybrid constructive heuristic and simulated annealing for railway crew scheduling
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2014.01.002
– volume: 55
  start-page: 1227
  issue: 6
  year: 2021
  ident: 10.1016/j.asoc.2025.113574_bib21
  article-title: Robust tactical crew scheduling under uncertain demand
  publication-title: Transp. Sci.
– volume: 293
  start-page: 1113
  issue: 03
  year: 2021
  ident: 10.1016/j.asoc.2025.113574_bib24
  article-title: An efficient column generation approach for practical railway crew scheduling with attendance rates
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2020.12.058
– volume: 258
  year: 2020
  ident: 10.1016/j.asoc.2025.113574_bib38
  article-title: Collaborative two-echelon multicenter vehicle routing optimization based on state–space–time network representation
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120590
– volume: 44
  start-page: 493
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2025.113574_bib18
  article-title: Column generation with dynamic duty selection for railway crew rescheduling
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1100.0322
– volume: 177
  start-page: 1764
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2025.113574_bib25
  article-title: Generating, scheduling and rostering of shift crew-duties, applications at the Hong Kong international airport
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.10.008
– volume: 143
  year: 2022
  ident: 10.1016/j.asoc.2025.113574_bib33
  article-title: Metro crew planning with day-off pattern, duty type, and rostering scheme considerations
  publication-title: Transp. Res. Part C.
  doi: 10.1016/j.trc.2022.103832
– volume: 8
  start-page: 2621
  issue: 12
  year: 2018
  ident: 10.1016/j.asoc.2025.113574_bib45
  article-title: Hybrid genetic simulated annealing algorithm for improved flow shop scheduling with makespan criterion
  publication-title: Appl. Sci.
  doi: 10.3390/app8122621
– volume: 83
  start-page: 165
  year: 2017
  ident: 10.1016/j.asoc.2025.113574_bib26
  article-title: Optimization of periodic crew schedules with application of column generation method
  publication-title: Transp. Res. Part C.
  doi: 10.1016/j.trc.2017.07.008
– volume: 56
  start-page: 174
  year: 2013
  ident: 10.1016/j.asoc.2025.113574_bib31
  article-title: Evolutionary crew scheduling with adaptive chromosomes
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2013.08.003
– volume: 199
  start-page: 674
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2025.113574_bib40
  article-title: Genetic algorithm based approach for the integrated airline crew-pairing and rostering problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2007.10.065
– volume: 12
  start-page: 1881
  issue: 12
  year: 2024
  ident: 10.1016/j.asoc.2025.113574_bib47
  article-title: Hybrid genetic algorithm and tabu search for solving preventive maintenance scheduling for cogeneration plants
  publication-title: Mathematics
  doi: 10.3390/math12121881
– volume: 33
  start-page: 843
  year: 2011
  ident: 10.1016/j.asoc.2025.113574_bib4
  article-title: Railway track allocation: models and methods
  publication-title: spectrum
– volume: 2023
  start-page: 17
  year: 2023
  ident: 10.1016/j.asoc.2025.113574_bib44
  article-title: Mitigating developed persistent threats (APTs) through machine learning-based intrusion detection systems: a comprehensive analysis
  publication-title: Shifra
  doi: 10.70470/SHIFRA/2023/003
– volume: 229
  start-page: 318
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2025.113574_bib52
  article-title: A decomposition approach for the integrated vehicle-crew-roster problem with days-off pattern
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2013.02.055
– volume: 16
  start-page: 575
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2025.113574_bib27
  article-title: An evolutionary and constructive approach to a crew scheduling problem in underground passenger transport
  publication-title: J. Heuristics
  doi: 10.1007/s10732-009-9102-x
– volume: 39
  start-page: 273
  issue: 2
  year: 2005
  ident: 10.1016/j.asoc.2025.113574_bib28
  article-title: Hybrid column generation approaches for urban transit crew management problems
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1030.0078
– volume: 287
  start-page: 211
  year: 2020
  ident: 10.1016/j.asoc.2025.113574_bib13
  article-title: Alternating lagrangian decomposition for integrated airline crew scheduling problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2020.05.005
SSID ssj0016928
Score 2.4554331
Snippet The crew scheduling problem is highly important for the operation and management of urban rail transit. It is essential to reasonably design an approach for...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 113574
SubjectTerms Crew scheduling
Hybrid genetic tabu search algorithm
Space-time-state network
Urban rail transit
Title A hybrid genetic tabu search algorithm for metro crew scheduling based on a space-time-state network
URI https://dx.doi.org/10.1016/j.asoc.2025.113574
Volume 182
WOSCitedRecordID wos001538813500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016928
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cCFN6K85AO3yNWu40d8XKEiqKqqEkVsT5FfoVvRbLWbhfLvGT-SXS0VAiQuUTSRnWjm0_jzZMaD0BtqGB85YYnVY0VghRbEKDsm2jHDS6_lyMZC4SN5fFxNp-oklxAsYzsB2bbV9bW6-q-mBhkYO5TO_oW5h0lBAPdgdLiC2eH6R4afFOc_QhlWaI4cKhSLTptVkaMb-uuX-WLWnV_G9MJL3y3mBfDG7wVscmHRibXpYWFz4SeCLsDdWE9C_3kSK4-KNmWNb1LanscuwaHHDPVV1y-HYMjpKuUP-7XoaJZj1CcbwrMsO9sY-znLDmctfF2W5wgF5UOuWw6b_VI6kzytqAhTOf44uGJ6o1tPEYaLfQ2I3Q-vCK1oeGrvs3Vc9scwcZgXuB14UF7eRrtUcgUeb3fy4WB6OPxjEip23h0-JJdUpey_7TfdTFs2qMjpA3Qv7yHwJNn-Ibrl20foft-fA2d3_Ri5CU5QwBkKOEABJyjgAQoYoIAjFHCAAl5DAUco4HmLNd6GAs5QeII-vTs4ffue5K4axFJedkQ2CnYJlRPee8lGVmigMY0QlR8pF47gAgqrmePKNx4ew4aaWkYbxr1z1NCmfIp22nnrnyFsy9I00tgKiBYTQiur_JhJU8ImuJHO7KGiV1p9lQ5Pqfuswos6qLgOKq6TivcQ7_VaZ_qXaF0NMPjNuOf_OO4FurtG60u00y1W_hW6Y791s-XidUbLT7NMgao
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+genetic+tabu+search+algorithm+for+metro+crew+scheduling+based+on+a+space-time-state+network&rft.jtitle=Applied+soft+computing&rft.au=Xue%2C+Feng&rft.au=Liang%2C+Peng&rft.au=Yang%2C+Ying&rft.au=Wang%2C+Jincheng&rft.date=2025-10-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=182&rft_id=info:doi/10.1016%2Fj.asoc.2025.113574&rft.externalDocID=S1568494625008853
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon