Double-parameter bifurcation of a predator-prey system in advective environments
This paper is concerned with a diffusive predator-prey system incorporating a generalist predator in open advective environments. By simultaneously considering the advection rates of the predator and prey as bifurcation parameter, we apply the implicit function theorem to establish the existence of...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 553; číslo 1; s. 129823 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.01.2026
|
| Témata: | |
| ISSN: | 0022-247X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper is concerned with a diffusive predator-prey system incorporating a generalist predator in open advective environments. By simultaneously considering the advection rates of the predator and prey as bifurcation parameter, we apply the implicit function theorem to establish the existence of positive steady state of this system. Furthermore, we demonstrate that the positive steady state is locally asymptotically stable. These findings not only enrich the theoretical research on predator-prey models but also offer novel perspectives and methodologies for studying population dynamics in riverine ecosystems. |
|---|---|
| ISSN: | 0022-247X |
| DOI: | 10.1016/j.jmaa.2025.129823 |