Double-parameter bifurcation of a predator-prey system in advective environments

This paper is concerned with a diffusive predator-prey system incorporating a generalist predator in open advective environments. By simultaneously considering the advection rates of the predator and prey as bifurcation parameter, we apply the implicit function theorem to establish the existence of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 553; číslo 1; s. 129823
Hlavní autoři: Wang, Biao, Deng, Longxian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.01.2026
Témata:
ISSN:0022-247X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper is concerned with a diffusive predator-prey system incorporating a generalist predator in open advective environments. By simultaneously considering the advection rates of the predator and prey as bifurcation parameter, we apply the implicit function theorem to establish the existence of positive steady state of this system. Furthermore, we demonstrate that the positive steady state is locally asymptotically stable. These findings not only enrich the theoretical research on predator-prey models but also offer novel perspectives and methodologies for studying population dynamics in riverine ecosystems.
ISSN:0022-247X
DOI:10.1016/j.jmaa.2025.129823