Stochastic algorithm-based optimization using artificial intelligence/machine learning models for sorption enhanced steam methane reformer reactor
•A novel approach to real time optimization of SESMR is introduced.•It combines the strength of stochastic algorithms with data-driven models.•Solver can navigate complex solution spaces in real-world applications.•The proposed approach greatly improves the overall optimization process. There is a n...
Uložené v:
| Vydané v: | Computers & chemical engineering Ročník 196; s. 109060 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.05.2025
|
| Predmet: | |
| ISSN: | 0098-1354 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!