Stochastic algorithm-based optimization using artificial intelligence/machine learning models for sorption enhanced steam methane reformer reactor
•A novel approach to real time optimization of SESMR is introduced.•It combines the strength of stochastic algorithms with data-driven models.•Solver can navigate complex solution spaces in real-world applications.•The proposed approach greatly improves the overall optimization process. There is a n...
Uloženo v:
| Vydáno v: | Computers & chemical engineering Ročník 196; s. 109060 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.05.2025
|
| Témata: | |
| ISSN: | 0098-1354 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!