Some bounds on the Laplacian eigenvalues of token graphs

The k-token graph Fk(G) of a graph G on n vertices is the graph whose vertices are the (nk)k-subsets of vertices from G, two of which are adjacent whenever their symmetric difference is a pair of adjacent vertices in G. It is known that the algebraic connectivity (or second Laplacian eigenvalue) of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete mathematics Ročník 348; číslo 4; s. 114382
Hlavní autori: Dalfó, C., Fiol, M.A., Messegué, A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.04.2025
Predmet:
ISSN:0012-365X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The k-token graph Fk(G) of a graph G on n vertices is the graph whose vertices are the (nk)k-subsets of vertices from G, two of which are adjacent whenever their symmetric difference is a pair of adjacent vertices in G. It is known that the algebraic connectivity (or second Laplacian eigenvalue) of Fk(G) equals the algebraic connectivity α(G) of G. In this paper, we give some bounds on the (Laplacian) eigenvalues of the k-token graph (including the algebraic connectivity) in terms of the h-token graph, with h≤k. For instance, we prove that if λ is an eigenvalue of Fk(G), but not of G, thenλ≥kα(G)−k+1. As a consequence, we conclude that if α(G)≥k, then α(Fh(G))=α(G) for every h≤k.
ISSN:0012-365X
DOI:10.1016/j.disc.2024.114382