Some bounds on the Laplacian eigenvalues of token graphs
The k-token graph Fk(G) of a graph G on n vertices is the graph whose vertices are the (nk)k-subsets of vertices from G, two of which are adjacent whenever their symmetric difference is a pair of adjacent vertices in G. It is known that the algebraic connectivity (or second Laplacian eigenvalue) of...
Uloženo v:
| Vydáno v: | Discrete mathematics Ročník 348; číslo 4; s. 114382 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.04.2025
|
| Témata: | |
| ISSN: | 0012-365X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The k-token graph Fk(G) of a graph G on n vertices is the graph whose vertices are the (nk)k-subsets of vertices from G, two of which are adjacent whenever their symmetric difference is a pair of adjacent vertices in G.
It is known that the algebraic connectivity (or second Laplacian eigenvalue) of Fk(G) equals the algebraic connectivity α(G) of G.
In this paper, we give some bounds on the (Laplacian) eigenvalues of the k-token graph (including the algebraic connectivity) in terms of the h-token graph, with h≤k. For instance, we prove that if λ is an eigenvalue of Fk(G), but not of G, thenλ≥kα(G)−k+1. As a consequence, we conclude that if α(G)≥k, then α(Fh(G))=α(G) for every h≤k. |
|---|---|
| ISSN: | 0012-365X |
| DOI: | 10.1016/j.disc.2024.114382 |