A stochastic primal–dual algorithm for composite optimization with a linear operator

This paper introduces a stochastic primal–dual algorithm tailored for solving optimization problems involving the sum of three functions with a linear operator. Additionally, we conduct a comprehensive analysis of the convergence of our proposed algorithm within a generally convex framework. Our stu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 267; s. 126021
Hlavní autoři: Wen, Meng, Zhang, Yongqiang, Tang, Yuchao, Cui, Angang, Peng, Jigen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.04.2025
Témata:
ISSN:0957-4174
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper introduces a stochastic primal–dual algorithm tailored for solving optimization problems involving the sum of three functions with a linear operator. Additionally, we conduct a comprehensive analysis of the convergence of our proposed algorithm within a generally convex framework. Our study includes numerical experiments focusing on fused logistic regression and graph-guided regularized logistic regression problems. The results demonstrate that our algorithm outperforms other state-of-the-art methods in terms of efficiency and consistency. •Design a new stochastic primal–dual algorithm for solving Non-smooth optimization problems.•Conduct a comprehensive analysis of the convergence of our proposed algorithm.•Illustrate the efficiency of our proposed algorithm through some numerical example.
ISSN:0957-4174
DOI:10.1016/j.eswa.2024.126021