A stochastic primal–dual algorithm for composite optimization with a linear operator
This paper introduces a stochastic primal–dual algorithm tailored for solving optimization problems involving the sum of three functions with a linear operator. Additionally, we conduct a comprehensive analysis of the convergence of our proposed algorithm within a generally convex framework. Our stu...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 267; s. 126021 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.04.2025
|
| Témata: | |
| ISSN: | 0957-4174 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper introduces a stochastic primal–dual algorithm tailored for solving optimization problems involving the sum of three functions with a linear operator. Additionally, we conduct a comprehensive analysis of the convergence of our proposed algorithm within a generally convex framework. Our study includes numerical experiments focusing on fused logistic regression and graph-guided regularized logistic regression problems. The results demonstrate that our algorithm outperforms other state-of-the-art methods in terms of efficiency and consistency.
•Design a new stochastic primal–dual algorithm for solving Non-smooth optimization problems.•Conduct a comprehensive analysis of the convergence of our proposed algorithm.•Illustrate the efficiency of our proposed algorithm through some numerical example. |
|---|---|
| ISSN: | 0957-4174 |
| DOI: | 10.1016/j.eswa.2024.126021 |