Dynamic robust fusion neural network assisted multi-objective optimization framework for scramjet inlet design

•Developed a dynamic robust fusion neural network (DRFN) for high-speed inlet design.•Achieved high-efficiency optimization with improved aerodynamic performance.•Validated DRFN shows higher accuracy and robustness than conventional surrogate models.•Advanced AI-driven framework improves aerospace e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Aerospace science and technology Ročník 167; s. 110691
Hlavní autori: Ren, Hu, Ma, Yue, Tong, Shuhong, Tian, Ye
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Masson SAS 01.12.2025
Predmet:
ISSN:1270-9638
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Developed a dynamic robust fusion neural network (DRFN) for high-speed inlet design.•Achieved high-efficiency optimization with improved aerodynamic performance.•Validated DRFN shows higher accuracy and robustness than conventional surrogate models.•Advanced AI-driven framework improves aerospace engineering application capabilities. To address the challenges of designing efficient inlets for aerospace vehicles under varying Mach number conditions, this study presents an adaptive multi-objective optimization framework incorporating a dynamic robust fusion neural network surrogate model. This method leverages advanced machine learning techniques to establish precise mappings between inlet geometry parameters and performance metrics, enhancing both prediction accuracy and decision-making in aerodynamic design. The framework employs the adaptive reference vector guided evolutionary algorithm (ARVEA), benchmarked against traditional optimization methods such as NSGA-II and PSO, demonstrating significant improvements in both computational efficiency and solution quality. Experimental validations across Mach numbers 6 to 8 reveal the framework's capability to achieve smooth transitions and reliable startup at Mach 5, while satisfying stringent static pressure ratio constraints essential for spacecraft and high-speed aircraft performance. Compared to the conventional Busemann inlet design, the optimized configuration yields a 19.8 % reduction in length, a 2.14 % increase in total pressure recovery coefficient, and a 3.83 % reduction in drag—enhancements that directly contribute to the aerodynamic efficiency and propulsion effectiveness of aerospace vehicles. This study underscores the potential of integrating AI-driven surrogate models with adaptive optimization algorithms to advance both theoretical understanding and practical applications in aerospace engineering, particularly in the realm of complex system design and high-speed propulsion technologies. The findings align with the thematic focus of knowledge-based systems and their interdisciplinary applications in modern aerospace science and technology.
AbstractList •Developed a dynamic robust fusion neural network (DRFN) for high-speed inlet design.•Achieved high-efficiency optimization with improved aerodynamic performance.•Validated DRFN shows higher accuracy and robustness than conventional surrogate models.•Advanced AI-driven framework improves aerospace engineering application capabilities. To address the challenges of designing efficient inlets for aerospace vehicles under varying Mach number conditions, this study presents an adaptive multi-objective optimization framework incorporating a dynamic robust fusion neural network surrogate model. This method leverages advanced machine learning techniques to establish precise mappings between inlet geometry parameters and performance metrics, enhancing both prediction accuracy and decision-making in aerodynamic design. The framework employs the adaptive reference vector guided evolutionary algorithm (ARVEA), benchmarked against traditional optimization methods such as NSGA-II and PSO, demonstrating significant improvements in both computational efficiency and solution quality. Experimental validations across Mach numbers 6 to 8 reveal the framework's capability to achieve smooth transitions and reliable startup at Mach 5, while satisfying stringent static pressure ratio constraints essential for spacecraft and high-speed aircraft performance. Compared to the conventional Busemann inlet design, the optimized configuration yields a 19.8 % reduction in length, a 2.14 % increase in total pressure recovery coefficient, and a 3.83 % reduction in drag—enhancements that directly contribute to the aerodynamic efficiency and propulsion effectiveness of aerospace vehicles. This study underscores the potential of integrating AI-driven surrogate models with adaptive optimization algorithms to advance both theoretical understanding and practical applications in aerospace engineering, particularly in the realm of complex system design and high-speed propulsion technologies. The findings align with the thematic focus of knowledge-based systems and their interdisciplinary applications in modern aerospace science and technology.
ArticleNumber 110691
Author Ma, Yue
Tian, Ye
Tong, Shuhong
Ren, Hu
Author_xml – sequence: 1
  givenname: Hu
  surname: Ren
  fullname: Ren, Hu
  organization: Aerospace Technology Institute, China Aerodynamics Research and Development Center (CARDC), 621000 Mianyang, PR China
– sequence: 2
  givenname: Yue
  surname: Ma
  fullname: Ma, Yue
  organization: Aerospace Technology Institute, China Aerodynamics Research and Development Center (CARDC), 621000 Mianyang, PR China
– sequence: 3
  givenname: Shuhong
  surname: Tong
  fullname: Tong, Shuhong
  organization: Aerospace Technology Institute, China Aerodynamics Research and Development Center (CARDC), 621000 Mianyang, PR China
– sequence: 4
  givenname: Ye
  orcidid: 0000-0001-9955-3438
  surname: Tian
  fullname: Tian, Ye
  email: tianye@cardc.cn
  organization: Aerospace Technology Institute, China Aerodynamics Research and Development Center (CARDC), 621000 Mianyang, PR China
BookMark eNp9kMtOAzEMRbMoEi3wAezyA1OSzFusUHlKldjAOsrDQRlmkirJFJWvJ6Ws2fjKko9lnxVaOO8AoWtK1pTQ5mZYi5jWjLB6TSlperpAS8paUvRN2Z2jVYwDIYT1FVsid39wYrIKBy_nmLCZo_UOO5iDGHOkLx8-sYjRxgQaT_OYbOHlACrZPWC_S3ay3yIdIRPEBL_zxgccVW4HSNi6MVcN0X64S3RmxBjh6i8v0Pvjw9vmudi-Pr1s7raFYjVNhW47IzSroJbSdL1pwUihmpJ2wCSBuqppK0rWCGkkq7SSrKGNyuNGCVYTXV4getqrgo8xgOG7YCcRDpwSfpTEB54l8aMkfpKUmdsTA_mwvYXAo7LgFGgb8rtce_sP_QMowXfx
Cites_doi 10.1016/j.ast.2020.106362
10.2514/1.B36028
10.1016/j.ast.2022.107470
10.1016/j.ast.2023.108189
10.1016/j.egyr.2024.07.059
10.1016/j.ast.2021.106864
10.2514/3.4179
10.1016/j.ast.2024.109098
10.1016/j.ast.2024.109205
10.1016/j.ast.2022.107931
10.1016/j.actaastro.2022.09.001
10.1016/j.actaastro.2022.01.036
10.1016/j.egyai.2024.100372
10.3390/pr10010133
10.1016/j.cma.2023.116042
10.1016/j.ast.2024.108953
10.1016/j.ast.2019.105318
10.1016/j.egyai.2021.100117
10.2514/1.J062744
10.1016/j.ast.2024.109890
10.2514/1.J054287
10.1016/j.ast.2024.109139
10.1109/TEVC.2021.3103936
10.1016/j.ast.2024.109264
10.1016/j.ast.2024.109423
10.1007/s11431-009-0125-1
10.1016/j.ast.2023.108820
10.1016/j.ast.2016.06.009
10.1016/j.ast.2019.02.039
10.1016/j.cma.2023.116704
10.1063/5.0170231
10.1016/j.enconman.2025.119836
10.1016/j.ast.2022.107875
10.1016/j.ast.2022.107901
10.2514/1.J062113
10.1016/j.ast.2021.106676
10.1016/j.ast.2017.02.018
10.1016/j.ast.2025.110031
10.1063/5.0080272
10.1016/j.heliyon.2024.e35748
10.1016/j.egyai.2023.100327
10.1016/j.ast.2021.106893
ContentType Journal Article
Copyright 2025 Elsevier Masson SAS
Copyright_xml – notice: 2025 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.ast.2025.110691
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ast_2025_110691
S127096382500762X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPGS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
XPP
ZMT
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c251t-d78fad24e5bbf89f7efbac6318e2b0e54517a326abfb24dcb2616c4e5fca250d3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001543162000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1270-9638
IngestDate Thu Nov 27 00:59:18 EST 2025
Wed Dec 10 14:26:05 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Inlet design
Multi-objective optimization
Neural network
Transfer learning
Scramjet
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-d78fad24e5bbf89f7efbac6318e2b0e54517a326abfb24dcb2616c4e5fca250d3
ORCID 0000-0001-9955-3438
ParticipantIDs crossref_primary_10_1016_j_ast_2025_110691
elsevier_sciencedirect_doi_10_1016_j_ast_2025_110691
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Aerospace science and technology
PublicationYear 2025
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Johnson, Jenquin, McCready (bib0010) 2023; 61
Cheng, Zhan, Shu, Fan, Wang (bib0024) 2019; 87
Khan, Sakib, Sakib (bib0045) 2025; 26
Han, Park, Park, Nam, Lee, Lee (bib0002) 2024; 153
Dai, Sun, Zhao, Li, Liu, Zhang, Huang, Dong (bib0005) 2024; 144
Khan, Naqib-Ul-Islam, Faruque (bib0039) 2024; 49
Wang, Cai, Duan, Tian (bib0026) 2017; 66
Brahmachary, Fujio, Ogawa (bib0027) 2020; 107
Fu, Qu, Liu (bib0032) 2022; 123
Araújo, Pereira, Marinho, Martos, Toro (bib0023) 2021; 116
Ma, Guo, Tian (bib0007) 2024
Rêgo, Marcos, Pinto, Vilela, Galvão, Pivetta, Camilo, Silva, Lima, Carvalhal, Cardoso, Martos, Santos, Oliveira, Toro (bib0006) 2016; 55
Molder (bib0011) 1967; 5
Wang, Qiu, Wang (bib0034) 2023; 136
Jung, Im (bib0004) 2024; 149
Brahmachary, Fujio, Aksay (bib0030) 2022; 34
Hossain, Hossain, Ahmed (bib0040) 2021; 6
Turja, Khan, Rahman (bib0042) 2024; 16
Lin, Wu, Ma (bib0049) 2021; 26
Zhao, Ma, Tian, Ding, Zhang, Tong (bib0050) 2025; 159
Baigh, Saif, Mustakim (bib0044) 2024; 10
Brahmachary, Ogawa (bib0028) 2021
Turja, Hossain, Ehsan (bib0041) 2024; 15
Fujio, Ogawa (bib0033) 2022
Ma, Guo, Zhang (bib0035) 2023; 35
Musa, Huang, Jin (bib0017) 2023; 61
Zhong, Qu, Sun (bib0037) 2024
Fujio, Ogawa (bib0031) 2022; 194
Nanzeeba, Baigh, Kabir (bib0043) 2024; 12
Musa, Huang, Yu (bib0016) 2022; 201
O'Brien, Colville (bib0014) 2007
Luo, Xia, Liu (bib0022) 2021; 116
Park, Nam, Lee, Lee (bib0003) 2024; 151
Cerda-Flores, Rojas-Punzo, Nápoles-Rivera (bib0048) 2022; 10
Fujio, Ogawa (bib0029) 2021; 113
Fu, Qu, Liu, Sun, Bai (bib0021) 2022; 123
Hao, Luo, Yu (bib0009) 2024; 148
Wang, Eri, Wang, Kong, Ding (bib0020) 2023; 136
Sun, Sengupta, Juniper (bib0018) 2023; 411
Meng, Kong, Yi, Peng (bib0047) 2024; 420
Sgubin, Ribeiro, Silva, Minucci, Galembeck (bib0001) 2025; 158
Otto, Trefny, Slater (bib0008) 2016; 32
Flock, Gülhan (bib0013) 2016; 54
Guo, Deng, Ma (bib0038) 2024; 150
Raiyan, Khan, Ehsan (bib0046) 2025; 337
Liu, Wei, Zhang (bib0051) 2022; 130
You, Liang (bib0015) 2009; 52
He, Yang, Shi, Gao, Yang (bib0019) 2022; 130
Fujio, Ogawa (bib0036) 2022; 130
Tognelli, Cakir, Saracoglu (bib0012) 2023
Zenkner, Trost, Becker, Voß (bib0025) 2019; 93
Araújo (10.1016/j.ast.2025.110691_bib0023) 2021; 116
Khan (10.1016/j.ast.2025.110691_bib0045) 2025; 26
Luo (10.1016/j.ast.2025.110691_bib0022) 2021; 116
Park (10.1016/j.ast.2025.110691_bib0003) 2024; 151
Han (10.1016/j.ast.2025.110691_bib0002) 2024; 153
You (10.1016/j.ast.2025.110691_bib0015) 2009; 52
Zhao (10.1016/j.ast.2025.110691_bib0050) 2025; 159
Musa (10.1016/j.ast.2025.110691_bib0016) 2022; 201
Wang (10.1016/j.ast.2025.110691_bib0026) 2017; 66
Liu (10.1016/j.ast.2025.110691_bib0051) 2022; 130
Brahmachary (10.1016/j.ast.2025.110691_bib0028) 2021
He (10.1016/j.ast.2025.110691_bib0019) 2022; 130
Hao (10.1016/j.ast.2025.110691_bib0009) 2024; 148
Baigh (10.1016/j.ast.2025.110691_bib0044) 2024; 10
Sgubin (10.1016/j.ast.2025.110691_bib0001) 2025; 158
Zhong (10.1016/j.ast.2025.110691_bib0037) 2024
Turja (10.1016/j.ast.2025.110691_bib0041) 2024; 15
Fujio (10.1016/j.ast.2025.110691_bib0029) 2021; 113
Zenkner (10.1016/j.ast.2025.110691_bib0025) 2019; 93
Cheng (10.1016/j.ast.2025.110691_bib0024) 2019; 87
Brahmachary (10.1016/j.ast.2025.110691_bib0027) 2020; 107
Ma (10.1016/j.ast.2025.110691_bib0007) 2024
Fujio (10.1016/j.ast.2025.110691_bib0033) 2022
Rêgo (10.1016/j.ast.2025.110691_bib0006) 2016; 55
Wang (10.1016/j.ast.2025.110691_bib0020) 2023; 136
Sun (10.1016/j.ast.2025.110691_bib0018) 2023; 411
Ma (10.1016/j.ast.2025.110691_bib0035) 2023; 35
Otto (10.1016/j.ast.2025.110691_bib0008) 2016; 32
Molder (10.1016/j.ast.2025.110691_bib0011) 1967; 5
Wang (10.1016/j.ast.2025.110691_bib0034) 2023; 136
Jung (10.1016/j.ast.2025.110691_bib0004) 2024; 149
Tognelli (10.1016/j.ast.2025.110691_bib0012) 2023
Johnson (10.1016/j.ast.2025.110691_bib0010) 2023; 61
Fu (10.1016/j.ast.2025.110691_bib0021) 2022; 123
Raiyan (10.1016/j.ast.2025.110691_bib0046) 2025; 337
Lin (10.1016/j.ast.2025.110691_bib0049) 2021; 26
Turja (10.1016/j.ast.2025.110691_bib0042) 2024; 16
Nanzeeba (10.1016/j.ast.2025.110691_bib0043) 2024; 12
Dai (10.1016/j.ast.2025.110691_bib0005) 2024; 144
Meng (10.1016/j.ast.2025.110691_bib0047) 2024; 420
O'Brien (10.1016/j.ast.2025.110691_bib0014) 2007
Cerda-Flores (10.1016/j.ast.2025.110691_bib0048) 2022; 10
Guo (10.1016/j.ast.2025.110691_bib0038) 2024; 150
Khan (10.1016/j.ast.2025.110691_bib0039) 2024; 49
Hossain (10.1016/j.ast.2025.110691_bib0040) 2021; 6
Brahmachary (10.1016/j.ast.2025.110691_bib0030) 2022; 34
Fujio (10.1016/j.ast.2025.110691_bib0036) 2022; 130
Fujio (10.1016/j.ast.2025.110691_bib0031) 2022; 194
Fu (10.1016/j.ast.2025.110691_bib0032) 2022; 123
Flock (10.1016/j.ast.2025.110691_bib0013) 2016; 54
Musa (10.1016/j.ast.2025.110691_bib0017) 2023; 61
References_xml – volume: 54
  start-page: 1881
  year: 2016
  end-page: 1891
  ident: bib0013
  article-title: Viscous effects and truncation effects in axisymmetric Busemann scramjet intakes
  publication-title: AIAA J.
– volume: 34
  year: 2022
  ident: bib0030
  article-title: Design optimization and off-design performance analysis of axisymmetric scramjet intakes for ascent flight
  publication-title: Phys. Fluids
– volume: 52
  start-page: 2017
  year: 2009
  end-page: 2028
  ident: bib0015
  article-title: Design concept of three-dimensional section controllable internal waverider hypersonic inlet
  publication-title: Sci. China E
– volume: 35
  year: 2023
  ident: bib0035
  article-title: Dynamic multi-objective optimization of scramjet inlet based on small-sample Kriging model
  publication-title: Phys. Fluids
– volume: 136
  year: 2023
  ident: bib0020
  article-title: Multi-objective aerodynamic optimization of an axisymmetric variable-geometry inlet with a mach 5 design point
  publication-title: Aerosp. Sci. Technol.
– volume: 113
  year: 2021
  ident: bib0029
  article-title: Physical insight into axisymmetric scramjet intake design via multi-objective design optimization using surrogate-assisted evolutionary algorithms
  publication-title: Aerosp. Sci. Technol.
– volume: 93
  year: 2019
  ident: bib0025
  article-title: Preliminary engine design and inlet optimization of the MULDICON concept
  publication-title: Aerosp. Sci. Technol.
– volume: 87
  start-page: 431
  year: 2019
  end-page: 447
  ident: bib0024
  article-title: Effective optimization on bump inlet using meta-model multi-objective particle swarm assisted by expected hyper-improvement
  publication-title: Aerosp. Sci. Technol.
– volume: 159
  year: 2025
  ident: bib0050
  article-title: Research on integrated design method of wide-range hypersonic vehicle/engine based on dynamic multi-objective optimization
  publication-title: Aerosp. Sci. Technol.
– volume: 12
  start-page: 1810
  year: 2024
  end-page: 1835
  ident: bib0043
  article-title: Genetic algorithm-based optimization of combined supercritical CO2 power and flash-tank enhanced transcritical CO2 refrigeration cycle for shipboard waste heat recuperation
  publication-title: Energy Rep.
– volume: 26
  start-page: 631
  year: 2021
  end-page: 645
  ident: bib0049
  article-title: An ensemble surrogate-based framework for expensive multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 130
  year: 2022
  ident: bib0051
  article-title: Uncertainty optimization design of airfoil based on adaptive point adding strategy
  publication-title: Aerosp. Sci. Technol.
– volume: 158
  year: 2025
  ident: bib0001
  article-title: Israel da Silveira Rêgo, assessment of heat flux on a printed scramjet inlet at mach 7 with coaxial thermocouples in a reflected shock tunnel
  publication-title: Aerosp. Sci. Technol.
– volume: 6
  year: 2021
  ident: bib0040
  article-title: Numerical investigation of a modified Kalina cycle system for high-temperature application and genetic algorithm based optimization of the multi-phase expander's inlet condition
  publication-title: Energy AI
– volume: 151
  year: 2024
  ident: bib0003
  article-title: Experimental and numerical investigation of the effects of porous bleed systems on a model scramjet inlet under high backpressure conditions
  publication-title: Aerosp. Sci. Technol.
– volume: 149
  year: 2024
  ident: bib0004
  article-title: Off-design characteristics of a scoop-type streamline-tracing scramjet inlet
  publication-title: Aerosp. Sci. Technol.
– year: 2024
  ident: bib0037
  article-title: Fast flow field prediction approach of supersonic inlet in wide operating range based on deep learning
  publication-title: Aerosp. Sci. Technol.
– volume: 15
  year: 2024
  ident: bib0041
  article-title: Multi-objective performance optimization & thermodynamic analysis of solar powered supercritical CO2 power cycles using machine learning methods & genetic algorithm
  publication-title: Energy AI
– volume: 61
  start-page: 23
  year: 2023
  end-page: 36
  ident: bib0010
  article-title: Experimental investigations of the hypersonic stream-traced performance inlet at subdesign mach number
  publication-title: AIAA J.
– volume: 49
  year: 2024
  ident: bib0039
  article-title: Advanced cascaded recompression absorption system equipped with ejector and vapor-injection enhanced vapor compression refrigeration system: ann based multi-objective optimization
  publication-title: Therm. Sci. Eng. Prog.
– volume: 153
  year: 2024
  ident: bib0002
  article-title: Numerical investigation of scramjet inlet models for side spillage reduction
  publication-title: Aerosp. Sci. Technol.
– volume: 130
  year: 2022
  ident: bib0019
  article-title: Multi-objective optimization design of S-shaped inlet with internal bump
  publication-title: Aerosp. Sci. Technol.
– start-page: 2353
  year: 2023
  ident: bib0012
  article-title: Design and investigation of Busemann intakes for high-speed propulsion systems
  publication-title: AIAA SCITECH 2023 Forum
– volume: 32
  start-page: 1178
  year: 2016
  end-page: 1189
  ident: bib0008
  article-title: Inward-turning streamline-traced inlet design method for low-boom, low-drag applications
  publication-title: J. Propuls. Power
– volume: 26
  year: 2025
  ident: bib0045
  article-title: Multi-objective optimization of a cascaded supercritical CO2 brayton cycle with ejector-enhanced transcritical CO2 and flash tank absorption refrigeration cycles
  publication-title: Energy Convers. Manag.
– volume: 148
  year: 2024
  ident: bib0009
  article-title: Novel design method for inward-turning inlets with non-uniform inflow
  publication-title: Aerosp. Sci. Technol.
– volume: 201
  start-page: 230
  year: 2022
  end-page: 246
  ident: bib0016
  article-title: Assessment of new pressure-corrected design method for hypersonic internal waverider intake
  publication-title: Acta Astronaut.
– start-page: 1408
  year: 2022
  ident: bib0033
  article-title: Scramjet intake design based on exit flow profile via global optimization and deep learning toward inverse design
  publication-title: AIAA SCITECH 2022 Forum
– volume: 107
  year: 2020
  ident: bib0027
  article-title: Multi-point design optimization of a high-performance intake for scramjet-powered ascent flight
  publication-title: Aerosp. Sci. Technol.
– volume: 194
  start-page: 59
  year: 2022
  end-page: 75
  ident: bib0031
  article-title: Physical insights into multi-point global optimum design of scramjet intakes for ascent flight
  publication-title: Acta Astronaut.
– volume: 10
  year: 2024
  ident: bib0044
  article-title: Enhancing thermodynamic performance with an advanced combined power and refrigeration cycle with dual LNG cold energy utilization
  publication-title: Heliyon
– volume: 123
  year: 2022
  ident: bib0021
  article-title: Multi-objective aerodynamic optimization of two-dimensional hypersonic forebody-inlet based on the heuristic algorithm
  publication-title: Aerosp. Sci. Technol.
– volume: 123
  year: 2022
  ident: bib0032
  article-title: Multi-objective aerodynamic optimization of two-dimensional hypersonic forebody-inlet based on the heuristic algorithm
  publication-title: Aerosp. Sci. Technol.
– volume: 116
  year: 2021
  ident: bib0022
  article-title: Robust design optimization considering inlet flow angle variations of a turbine cascade
  publication-title: Aerosp. Sci. Technol.
– start-page: 1
  year: 2007
  end-page: 8
  ident: bib0014
  article-title: Analytical computation of leading edge truncation effects on inviscid Busemann inlet performance
  publication-title: 45th AIAA Aerospace Sciences Meeting and Exhibit
– volume: 420
  year: 2024
  ident: bib0047
  article-title: Optimum-pursuing method for constrained optimization and reliability-based design optimization problems using Kriging model
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 150
  year: 2024
  ident: bib0038
  article-title: Hypersonic inlet flow field reconstruction dominated by shock wave and boundary layer based on small sample physics-informed neural networks
  publication-title: Aerosp. Sci. Technol.
– volume: 411
  year: 2023
  ident: bib0018
  article-title: Physics-informed deep learning for simultaneous surrogate modeling and PDE-constrained optimization of an airfoil geometry
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 5
  start-page: 1252
  year: 1967
  end-page: 1255
  ident: bib0011
  article-title: Internal, axisymmetric, conical flow
  publication-title: AIAA J.
– volume: 61
  start-page: 2906
  year: 2023
  end-page: 2921
  ident: bib0017
  article-title: New parent flowfield for streamline-traced intakes
  publication-title: AIAA J.
– start-page: 1960
  year: 2021
  ident: bib0028
  article-title: Multi-point design optimization of Busemann based intakes for scramjet-powered ascent flight via surrogate-assisted evolutionary algorithms
  publication-title: AIAA Scitech 2021 Forum
– volume: 337
  year: 2025
  ident: bib0046
  article-title: Exergoeconomic analysis and multi objective optimization of a nuclear driven integrated cooling and power cycle using response surface regression modeling coupled with genetic algorithm
  publication-title: Energy Convers. Manag.
– year: 2024
  ident: bib0007
  article-title: Recent advances and prospects in hypersonic inlet design and intelligent optimization
  publication-title: Aerosp. Sci. Technol.
– volume: 10
  start-page: 133
  year: 2022
  ident: bib0048
  article-title: Applications of multi-objective optimization to industrial processes: a literature review
  publication-title: Processes
– volume: 144
  year: 2024
  ident: bib0005
  article-title: Mode identification and decomposition analysis of self-excited thermodynamic oscillations in hypersonic inlet/isolator of a scramjet
  publication-title: Aerosp. Sci. Technol.
– volume: 136
  year: 2023
  ident: bib0034
  article-title: Multi-objective aerodynamic optimization of an axisymmetric variable-geometry inlet with a mach 5 design point
  publication-title: Aerosp. Sci. Technol.
– volume: 55
  start-page: 307
  year: 2016
  end-page: 313
  ident: bib0006
  article-title: Ground experimentation with 3D printed scramjet inlet models at hypervelocities
  publication-title: Aerosp. Sci. Technol.
– volume: 66
  start-page: 44
  year: 2017
  end-page: 58
  ident: bib0026
  article-title: Design of shape morphing hypersonic inward-turning inlet using multistage optimization
  publication-title: Aerosp. Sci. Technol.
– volume: 116
  year: 2021
  ident: bib0023
  article-title: Optimization of scramjet inlet based on temperature and mach number of supersonic combustion
  publication-title: Aerosp. Sci. Technol.
– volume: 130
  year: 2022
  ident: bib0036
  article-title: Deep-learning prediction and uncertainty quantification for scramjet intake flowfields
  publication-title: Aerosp. Sci. Technol.
– volume: 16
  year: 2024
  ident: bib0042
  article-title: Machine learning-based multi-objective optimization and thermal assessment of supercritical CO2 rankine cycles for gas turbine waste heat recovery
  publication-title: Energy AI
– volume: 107
  year: 2020
  ident: 10.1016/j.ast.2025.110691_bib0027
  article-title: Multi-point design optimization of a high-performance intake for scramjet-powered ascent flight
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.106362
– volume: 32
  start-page: 1178
  issue: 5
  year: 2016
  ident: 10.1016/j.ast.2025.110691_bib0008
  article-title: Inward-turning streamline-traced inlet design method for low-boom, low-drag applications
  publication-title: J. Propuls. Power
  doi: 10.2514/1.B36028
– volume: 123
  year: 2022
  ident: 10.1016/j.ast.2025.110691_bib0021
  article-title: Multi-objective aerodynamic optimization of two-dimensional hypersonic forebody-inlet based on the heuristic algorithm
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2022.107470
– volume: 136
  year: 2023
  ident: 10.1016/j.ast.2025.110691_bib0034
  article-title: Multi-objective aerodynamic optimization of an axisymmetric variable-geometry inlet with a mach 5 design point
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2023.108189
– volume: 12
  start-page: 1810
  year: 2024
  ident: 10.1016/j.ast.2025.110691_bib0043
  article-title: Genetic algorithm-based optimization of combined supercritical CO2 power and flash-tank enhanced transcritical CO2 refrigeration cycle for shipboard waste heat recuperation
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2024.07.059
– volume: 116
  year: 2021
  ident: 10.1016/j.ast.2025.110691_bib0023
  article-title: Optimization of scramjet inlet based on temperature and mach number of supersonic combustion
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2021.106864
– volume: 5
  start-page: 1252
  issue: 7
  year: 1967
  ident: 10.1016/j.ast.2025.110691_bib0011
  article-title: Internal, axisymmetric, conical flow
  publication-title: AIAA J.
  doi: 10.2514/3.4179
– start-page: 1960
  year: 2021
  ident: 10.1016/j.ast.2025.110691_bib0028
  article-title: Multi-point design optimization of Busemann based intakes for scramjet-powered ascent flight via surrogate-assisted evolutionary algorithms
– volume: 148
  year: 2024
  ident: 10.1016/j.ast.2025.110691_bib0009
  article-title: Novel design method for inward-turning inlets with non-uniform inflow
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2024.109098
– volume: 123
  year: 2022
  ident: 10.1016/j.ast.2025.110691_bib0032
  article-title: Multi-objective aerodynamic optimization of two-dimensional hypersonic forebody-inlet based on the heuristic algorithm
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2022.107470
– year: 2024
  ident: 10.1016/j.ast.2025.110691_bib0037
  article-title: Fast flow field prediction approach of supersonic inlet in wide operating range based on deep learning
  publication-title: Aerosp. Sci. Technol.
– volume: 150
  year: 2024
  ident: 10.1016/j.ast.2025.110691_bib0038
  article-title: Hypersonic inlet flow field reconstruction dominated by shock wave and boundary layer based on small sample physics-informed neural networks
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2024.109205
– volume: 130
  year: 2022
  ident: 10.1016/j.ast.2025.110691_bib0036
  article-title: Deep-learning prediction and uncertainty quantification for scramjet intake flowfields
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2022.107931
– volume: 201
  start-page: 230
  year: 2022
  ident: 10.1016/j.ast.2025.110691_bib0016
  article-title: Assessment of new pressure-corrected design method for hypersonic internal waverider intake
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2022.09.001
– volume: 194
  start-page: 59
  year: 2022
  ident: 10.1016/j.ast.2025.110691_bib0031
  article-title: Physical insights into multi-point global optimum design of scramjet intakes for ascent flight
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2022.01.036
– volume: 16
  year: 2024
  ident: 10.1016/j.ast.2025.110691_bib0042
  article-title: Machine learning-based multi-objective optimization and thermal assessment of supercritical CO2 rankine cycles for gas turbine waste heat recovery
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2024.100372
– volume: 10
  start-page: 133
  issue: 1
  year: 2022
  ident: 10.1016/j.ast.2025.110691_bib0048
  article-title: Applications of multi-objective optimization to industrial processes: a literature review
  publication-title: Processes
  doi: 10.3390/pr10010133
– start-page: 2353
  year: 2023
  ident: 10.1016/j.ast.2025.110691_bib0012
  article-title: Design and investigation of Busemann intakes for high-speed propulsion systems
– volume: 49
  year: 2024
  ident: 10.1016/j.ast.2025.110691_bib0039
  article-title: Advanced cascaded recompression absorption system equipped with ejector and vapor-injection enhanced vapor compression refrigeration system: ann based multi-objective optimization
  publication-title: Therm. Sci. Eng. Prog.
– volume: 411
  year: 2023
  ident: 10.1016/j.ast.2025.110691_bib0018
  article-title: Physics-informed deep learning for simultaneous surrogate modeling and PDE-constrained optimization of an airfoil geometry
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.116042
– year: 2024
  ident: 10.1016/j.ast.2025.110691_bib0007
  article-title: Recent advances and prospects in hypersonic inlet design and intelligent optimization
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2024.108953
– volume: 93
  year: 2019
  ident: 10.1016/j.ast.2025.110691_bib0025
  article-title: Preliminary engine design and inlet optimization of the MULDICON concept
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.105318
– volume: 6
  year: 2021
  ident: 10.1016/j.ast.2025.110691_bib0040
  article-title: Numerical investigation of a modified Kalina cycle system for high-temperature application and genetic algorithm based optimization of the multi-phase expander's inlet condition
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2021.100117
– volume: 61
  start-page: 2906
  issue: 7
  year: 2023
  ident: 10.1016/j.ast.2025.110691_bib0017
  article-title: New parent flowfield for streamline-traced intakes
  publication-title: AIAA J.
  doi: 10.2514/1.J062744
– volume: 158
  year: 2025
  ident: 10.1016/j.ast.2025.110691_bib0001
  article-title: Israel da Silveira Rêgo, assessment of heat flux on a printed scramjet inlet at mach 7 with coaxial thermocouples in a reflected shock tunnel
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2024.109890
– volume: 54
  start-page: 1881
  issue: 6
  year: 2016
  ident: 10.1016/j.ast.2025.110691_bib0013
  article-title: Viscous effects and truncation effects in axisymmetric Busemann scramjet intakes
  publication-title: AIAA J.
  doi: 10.2514/1.J054287
– volume: 149
  year: 2024
  ident: 10.1016/j.ast.2025.110691_bib0004
  article-title: Off-design characteristics of a scoop-type streamline-tracing scramjet inlet
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2024.109139
– volume: 26
  start-page: 631
  issue: 4
  year: 2021
  ident: 10.1016/j.ast.2025.110691_bib0049
  article-title: An ensemble surrogate-based framework for expensive multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3103936
– volume: 151
  year: 2024
  ident: 10.1016/j.ast.2025.110691_bib0003
  article-title: Experimental and numerical investigation of the effects of porous bleed systems on a model scramjet inlet under high backpressure conditions
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2024.109264
– volume: 153
  year: 2024
  ident: 10.1016/j.ast.2025.110691_bib0002
  article-title: Numerical investigation of scramjet inlet models for side spillage reduction
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2024.109423
– start-page: 1408
  year: 2022
  ident: 10.1016/j.ast.2025.110691_bib0033
  article-title: Scramjet intake design based on exit flow profile via global optimization and deep learning toward inverse design
– volume: 52
  start-page: 2017
  issue: 7
  year: 2009
  ident: 10.1016/j.ast.2025.110691_bib0015
  article-title: Design concept of three-dimensional section controllable internal waverider hypersonic inlet
  publication-title: Sci. China E
  doi: 10.1007/s11431-009-0125-1
– volume: 144
  year: 2024
  ident: 10.1016/j.ast.2025.110691_bib0005
  article-title: Mode identification and decomposition analysis of self-excited thermodynamic oscillations in hypersonic inlet/isolator of a scramjet
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2023.108820
– volume: 55
  start-page: 307
  year: 2016
  ident: 10.1016/j.ast.2025.110691_bib0006
  article-title: Ground experimentation with 3D printed scramjet inlet models at hypervelocities
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2016.06.009
– volume: 87
  start-page: 431
  year: 2019
  ident: 10.1016/j.ast.2025.110691_bib0024
  article-title: Effective optimization on bump inlet using meta-model multi-objective particle swarm assisted by expected hyper-improvement
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.02.039
– start-page: 1
  year: 2007
  ident: 10.1016/j.ast.2025.110691_bib0014
  article-title: Analytical computation of leading edge truncation effects on inviscid Busemann inlet performance
– volume: 420
  year: 2024
  ident: 10.1016/j.ast.2025.110691_bib0047
  article-title: Optimum-pursuing method for constrained optimization and reliability-based design optimization problems using Kriging model
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.116704
– volume: 136
  year: 2023
  ident: 10.1016/j.ast.2025.110691_bib0020
  article-title: Multi-objective aerodynamic optimization of an axisymmetric variable-geometry inlet with a mach 5 design point
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2023.108189
– volume: 35
  issue: 9
  year: 2023
  ident: 10.1016/j.ast.2025.110691_bib0035
  article-title: Dynamic multi-objective optimization of scramjet inlet based on small-sample Kriging model
  publication-title: Phys. Fluids
  doi: 10.1063/5.0170231
– volume: 337
  year: 2025
  ident: 10.1016/j.ast.2025.110691_bib0046
  article-title: Exergoeconomic analysis and multi objective optimization of a nuclear driven integrated cooling and power cycle using response surface regression modeling coupled with genetic algorithm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2025.119836
– volume: 130
  year: 2022
  ident: 10.1016/j.ast.2025.110691_bib0051
  article-title: Uncertainty optimization design of airfoil based on adaptive point adding strategy
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2022.107875
– volume: 26
  year: 2025
  ident: 10.1016/j.ast.2025.110691_bib0045
  article-title: Multi-objective optimization of a cascaded supercritical CO2 brayton cycle with ejector-enhanced transcritical CO2 and flash tank absorption refrigeration cycles
  publication-title: Energy Convers. Manag.
– volume: 130
  year: 2022
  ident: 10.1016/j.ast.2025.110691_bib0019
  article-title: Multi-objective optimization design of S-shaped inlet with internal bump
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2022.107901
– volume: 61
  start-page: 23
  issue: 1
  year: 2023
  ident: 10.1016/j.ast.2025.110691_bib0010
  article-title: Experimental investigations of the hypersonic stream-traced performance inlet at subdesign mach number
  publication-title: AIAA J.
  doi: 10.2514/1.J062113
– volume: 113
  year: 2021
  ident: 10.1016/j.ast.2025.110691_bib0029
  article-title: Physical insight into axisymmetric scramjet intake design via multi-objective design optimization using surrogate-assisted evolutionary algorithms
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2021.106676
– volume: 66
  start-page: 44
  year: 2017
  ident: 10.1016/j.ast.2025.110691_bib0026
  article-title: Design of shape morphing hypersonic inward-turning inlet using multistage optimization
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2017.02.018
– volume: 159
  year: 2025
  ident: 10.1016/j.ast.2025.110691_bib0050
  article-title: Research on integrated design method of wide-range hypersonic vehicle/engine based on dynamic multi-objective optimization
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2025.110031
– volume: 34
  issue: 3
  year: 2022
  ident: 10.1016/j.ast.2025.110691_bib0030
  article-title: Design optimization and off-design performance analysis of axisymmetric scramjet intakes for ascent flight
  publication-title: Phys. Fluids
  doi: 10.1063/5.0080272
– volume: 10
  issue: 15
  year: 2024
  ident: 10.1016/j.ast.2025.110691_bib0044
  article-title: Enhancing thermodynamic performance with an advanced combined power and refrigeration cycle with dual LNG cold energy utilization
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e35748
– volume: 15
  year: 2024
  ident: 10.1016/j.ast.2025.110691_bib0041
  article-title: Multi-objective performance optimization & thermodynamic analysis of solar powered supercritical CO2 power cycles using machine learning methods & genetic algorithm
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2023.100327
– volume: 116
  year: 2021
  ident: 10.1016/j.ast.2025.110691_bib0022
  article-title: Robust design optimization considering inlet flow angle variations of a turbine cascade
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2021.106893
SSID ssj0002942
Score 2.4153411
Snippet •Developed a dynamic robust fusion neural network (DRFN) for high-speed inlet design.•Achieved high-efficiency optimization with improved aerodynamic...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 110691
SubjectTerms Inlet design
Multi-objective optimization
Neural network
Scramjet
Transfer learning
Title Dynamic robust fusion neural network assisted multi-objective optimization framework for scramjet inlet design
URI https://dx.doi.org/10.1016/j.ast.2025.110691
Volume 167
WOSCitedRecordID wos001543162000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1270-9638
  databaseCode: AIEXJ
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002942
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELWgywEOiE-xfMkHTkRBqXHi-FjBogXBCtGCyimyE1tLpU1WbYP25zP22GnoggRIXKIqapx25uV5PHnjIeQZz0tj63oK4BUq5VJNU20LmZqSM6u4KJQXY355L05OyuVSfgxv8De-nYBo2_LiQp7_V1fDOXC2K539C3cPg8IJ-AxOhyO4HY5_5PjX2GM-WXe632wT27t8WOL2rQRvtKj6TiBkdv5tUFCYdnqFxJd0QCFnoTYzsVG55cWIQDDqbGVcTwFwdtLstB9xF1sDUy6swU0Si4W8PPNS8v4TUt1xv0uH-5mgH0C2CELh-Wl_2oW51WuFMV371YyTFSzfE34MVTQf4G86PpzNR9zLRJY6PviJnLFZxyWix5zD6oXaOEEsy105Q4F9v_b2z567cd2wEOxlQP3Lq-SAiVyWE3Iwe3u0fDdM3Ez6XkvD74gvwb0ccO9Gvw5jRqHJ4ha5GdYUdIZYuE2umPYOuTHaafIuaQMqKKKCIiooooIGVNCICrqHCjpGBR1QQQEVNKKCelRQRMU98vnN0eLVcRpabaQ1BLjbtBGlVQ3jJtfaltIKY7WqCyB8w3RmIMyeCgWRvtJWM97UGhbeRQ1ft7UCuzYv75NJ27XmAaHACswIlkk-lZwXpcwyBY-8Ubl1yYTmkDyPlqvOcUeVKkoNVxWYuXJmrtDMh4RH21YBuhjqVQCE31_28N8ue0Su70D7mEy26948Idfq79tvm_XTAJcfmPSMVg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+robust+fusion+neural+network+assisted+multi-objective+optimization+framework+for+scramjet+inlet+design&rft.jtitle=Aerospace+science+and+technology&rft.au=Ren%2C+Hu&rft.au=Ma%2C+Yue&rft.au=Tong%2C+Shuhong&rft.au=Tian%2C+Ye&rft.date=2025-12-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.volume=167&rft_id=info:doi/10.1016%2Fj.ast.2025.110691&rft.externalDocID=S127096382500762X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon