Dynamic robust fusion neural network assisted multi-objective optimization framework for scramjet inlet design
•Developed a dynamic robust fusion neural network (DRFN) for high-speed inlet design.•Achieved high-efficiency optimization with improved aerodynamic performance.•Validated DRFN shows higher accuracy and robustness than conventional surrogate models.•Advanced AI-driven framework improves aerospace e...
Saved in:
| Published in: | Aerospace science and technology Vol. 167; p. 110691 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Masson SAS
01.12.2025
|
| Subjects: | |
| ISSN: | 1270-9638 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Developed a dynamic robust fusion neural network (DRFN) for high-speed inlet design.•Achieved high-efficiency optimization with improved aerodynamic performance.•Validated DRFN shows higher accuracy and robustness than conventional surrogate models.•Advanced AI-driven framework improves aerospace engineering application capabilities.
To address the challenges of designing efficient inlets for aerospace vehicles under varying Mach number conditions, this study presents an adaptive multi-objective optimization framework incorporating a dynamic robust fusion neural network surrogate model. This method leverages advanced machine learning techniques to establish precise mappings between inlet geometry parameters and performance metrics, enhancing both prediction accuracy and decision-making in aerodynamic design. The framework employs the adaptive reference vector guided evolutionary algorithm (ARVEA), benchmarked against traditional optimization methods such as NSGA-II and PSO, demonstrating significant improvements in both computational efficiency and solution quality. Experimental validations across Mach numbers 6 to 8 reveal the framework's capability to achieve smooth transitions and reliable startup at Mach 5, while satisfying stringent static pressure ratio constraints essential for spacecraft and high-speed aircraft performance. Compared to the conventional Busemann inlet design, the optimized configuration yields a 19.8 % reduction in length, a 2.14 % increase in total pressure recovery coefficient, and a 3.83 % reduction in drag—enhancements that directly contribute to the aerodynamic efficiency and propulsion effectiveness of aerospace vehicles. This study underscores the potential of integrating AI-driven surrogate models with adaptive optimization algorithms to advance both theoretical understanding and practical applications in aerospace engineering, particularly in the realm of complex system design and high-speed propulsion technologies. The findings align with the thematic focus of knowledge-based systems and their interdisciplinary applications in modern aerospace science and technology. |
|---|---|
| AbstractList | •Developed a dynamic robust fusion neural network (DRFN) for high-speed inlet design.•Achieved high-efficiency optimization with improved aerodynamic performance.•Validated DRFN shows higher accuracy and robustness than conventional surrogate models.•Advanced AI-driven framework improves aerospace engineering application capabilities.
To address the challenges of designing efficient inlets for aerospace vehicles under varying Mach number conditions, this study presents an adaptive multi-objective optimization framework incorporating a dynamic robust fusion neural network surrogate model. This method leverages advanced machine learning techniques to establish precise mappings between inlet geometry parameters and performance metrics, enhancing both prediction accuracy and decision-making in aerodynamic design. The framework employs the adaptive reference vector guided evolutionary algorithm (ARVEA), benchmarked against traditional optimization methods such as NSGA-II and PSO, demonstrating significant improvements in both computational efficiency and solution quality. Experimental validations across Mach numbers 6 to 8 reveal the framework's capability to achieve smooth transitions and reliable startup at Mach 5, while satisfying stringent static pressure ratio constraints essential for spacecraft and high-speed aircraft performance. Compared to the conventional Busemann inlet design, the optimized configuration yields a 19.8 % reduction in length, a 2.14 % increase in total pressure recovery coefficient, and a 3.83 % reduction in drag—enhancements that directly contribute to the aerodynamic efficiency and propulsion effectiveness of aerospace vehicles. This study underscores the potential of integrating AI-driven surrogate models with adaptive optimization algorithms to advance both theoretical understanding and practical applications in aerospace engineering, particularly in the realm of complex system design and high-speed propulsion technologies. The findings align with the thematic focus of knowledge-based systems and their interdisciplinary applications in modern aerospace science and technology. |
| ArticleNumber | 110691 |
| Author | Ma, Yue Tian, Ye Tong, Shuhong Ren, Hu |
| Author_xml | – sequence: 1 givenname: Hu surname: Ren fullname: Ren, Hu organization: Aerospace Technology Institute, China Aerodynamics Research and Development Center (CARDC), 621000 Mianyang, PR China – sequence: 2 givenname: Yue surname: Ma fullname: Ma, Yue organization: Aerospace Technology Institute, China Aerodynamics Research and Development Center (CARDC), 621000 Mianyang, PR China – sequence: 3 givenname: Shuhong surname: Tong fullname: Tong, Shuhong organization: Aerospace Technology Institute, China Aerodynamics Research and Development Center (CARDC), 621000 Mianyang, PR China – sequence: 4 givenname: Ye orcidid: 0000-0001-9955-3438 surname: Tian fullname: Tian, Ye email: tianye@cardc.cn organization: Aerospace Technology Institute, China Aerodynamics Research and Development Center (CARDC), 621000 Mianyang, PR China |
| BookMark | eNp9kMtOAzEMRbMoEi3wAezyA1OSzFusUHlKldjAOsrDQRlmkirJFJWvJ6Ws2fjKko9lnxVaOO8AoWtK1pTQ5mZYi5jWjLB6TSlperpAS8paUvRN2Z2jVYwDIYT1FVsid39wYrIKBy_nmLCZo_UOO5iDGHOkLx8-sYjRxgQaT_OYbOHlACrZPWC_S3ay3yIdIRPEBL_zxgccVW4HSNi6MVcN0X64S3RmxBjh6i8v0Pvjw9vmudi-Pr1s7raFYjVNhW47IzSroJbSdL1pwUihmpJ2wCSBuqppK0rWCGkkq7SSrKGNyuNGCVYTXV4getqrgo8xgOG7YCcRDpwSfpTEB54l8aMkfpKUmdsTA_mwvYXAo7LgFGgb8rtce_sP_QMowXfx |
| Cites_doi | 10.1016/j.ast.2020.106362 10.2514/1.B36028 10.1016/j.ast.2022.107470 10.1016/j.ast.2023.108189 10.1016/j.egyr.2024.07.059 10.1016/j.ast.2021.106864 10.2514/3.4179 10.1016/j.ast.2024.109098 10.1016/j.ast.2024.109205 10.1016/j.ast.2022.107931 10.1016/j.actaastro.2022.09.001 10.1016/j.actaastro.2022.01.036 10.1016/j.egyai.2024.100372 10.3390/pr10010133 10.1016/j.cma.2023.116042 10.1016/j.ast.2024.108953 10.1016/j.ast.2019.105318 10.1016/j.egyai.2021.100117 10.2514/1.J062744 10.1016/j.ast.2024.109890 10.2514/1.J054287 10.1016/j.ast.2024.109139 10.1109/TEVC.2021.3103936 10.1016/j.ast.2024.109264 10.1016/j.ast.2024.109423 10.1007/s11431-009-0125-1 10.1016/j.ast.2023.108820 10.1016/j.ast.2016.06.009 10.1016/j.ast.2019.02.039 10.1016/j.cma.2023.116704 10.1063/5.0170231 10.1016/j.enconman.2025.119836 10.1016/j.ast.2022.107875 10.1016/j.ast.2022.107901 10.2514/1.J062113 10.1016/j.ast.2021.106676 10.1016/j.ast.2017.02.018 10.1016/j.ast.2025.110031 10.1063/5.0080272 10.1016/j.heliyon.2024.e35748 10.1016/j.egyai.2023.100327 10.1016/j.ast.2021.106893 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Masson SAS |
| Copyright_xml | – notice: 2025 Elsevier Masson SAS |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ast.2025.110691 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_ast_2025_110691 S127096382500762X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9DU AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHJVU AHPGS AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSZ T5K T9H VH1 XPP ZMT ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c251t-d78fad24e5bbf89f7efbac6318e2b0e54517a326abfb24dcb2616c4e5fca250d3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001543162000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1270-9638 |
| IngestDate | Thu Nov 27 00:59:18 EST 2025 Wed Dec 10 14:26:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Inlet design Multi-objective optimization Neural network Transfer learning Scramjet |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-d78fad24e5bbf89f7efbac6318e2b0e54517a326abfb24dcb2616c4e5fca250d3 |
| ORCID | 0000-0001-9955-3438 |
| ParticipantIDs | crossref_primary_10_1016_j_ast_2025_110691 elsevier_sciencedirect_doi_10_1016_j_ast_2025_110691 |
| PublicationCentury | 2000 |
| PublicationDate | December 2025 2025-12-00 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Aerospace science and technology |
| PublicationYear | 2025 |
| Publisher | Elsevier Masson SAS |
| Publisher_xml | – name: Elsevier Masson SAS |
| References | Johnson, Jenquin, McCready (bib0010) 2023; 61 Cheng, Zhan, Shu, Fan, Wang (bib0024) 2019; 87 Khan, Sakib, Sakib (bib0045) 2025; 26 Han, Park, Park, Nam, Lee, Lee (bib0002) 2024; 153 Dai, Sun, Zhao, Li, Liu, Zhang, Huang, Dong (bib0005) 2024; 144 Khan, Naqib-Ul-Islam, Faruque (bib0039) 2024; 49 Wang, Cai, Duan, Tian (bib0026) 2017; 66 Brahmachary, Fujio, Ogawa (bib0027) 2020; 107 Fu, Qu, Liu (bib0032) 2022; 123 Araújo, Pereira, Marinho, Martos, Toro (bib0023) 2021; 116 Ma, Guo, Tian (bib0007) 2024 Rêgo, Marcos, Pinto, Vilela, Galvão, Pivetta, Camilo, Silva, Lima, Carvalhal, Cardoso, Martos, Santos, Oliveira, Toro (bib0006) 2016; 55 Molder (bib0011) 1967; 5 Wang, Qiu, Wang (bib0034) 2023; 136 Jung, Im (bib0004) 2024; 149 Brahmachary, Fujio, Aksay (bib0030) 2022; 34 Hossain, Hossain, Ahmed (bib0040) 2021; 6 Turja, Khan, Rahman (bib0042) 2024; 16 Lin, Wu, Ma (bib0049) 2021; 26 Zhao, Ma, Tian, Ding, Zhang, Tong (bib0050) 2025; 159 Baigh, Saif, Mustakim (bib0044) 2024; 10 Brahmachary, Ogawa (bib0028) 2021 Turja, Hossain, Ehsan (bib0041) 2024; 15 Fujio, Ogawa (bib0033) 2022 Ma, Guo, Zhang (bib0035) 2023; 35 Musa, Huang, Jin (bib0017) 2023; 61 Zhong, Qu, Sun (bib0037) 2024 Fujio, Ogawa (bib0031) 2022; 194 Nanzeeba, Baigh, Kabir (bib0043) 2024; 12 Musa, Huang, Yu (bib0016) 2022; 201 O'Brien, Colville (bib0014) 2007 Luo, Xia, Liu (bib0022) 2021; 116 Park, Nam, Lee, Lee (bib0003) 2024; 151 Cerda-Flores, Rojas-Punzo, Nápoles-Rivera (bib0048) 2022; 10 Fujio, Ogawa (bib0029) 2021; 113 Fu, Qu, Liu, Sun, Bai (bib0021) 2022; 123 Hao, Luo, Yu (bib0009) 2024; 148 Wang, Eri, Wang, Kong, Ding (bib0020) 2023; 136 Sun, Sengupta, Juniper (bib0018) 2023; 411 Meng, Kong, Yi, Peng (bib0047) 2024; 420 Sgubin, Ribeiro, Silva, Minucci, Galembeck (bib0001) 2025; 158 Otto, Trefny, Slater (bib0008) 2016; 32 Flock, Gülhan (bib0013) 2016; 54 Guo, Deng, Ma (bib0038) 2024; 150 Raiyan, Khan, Ehsan (bib0046) 2025; 337 Liu, Wei, Zhang (bib0051) 2022; 130 You, Liang (bib0015) 2009; 52 He, Yang, Shi, Gao, Yang (bib0019) 2022; 130 Fujio, Ogawa (bib0036) 2022; 130 Tognelli, Cakir, Saracoglu (bib0012) 2023 Zenkner, Trost, Becker, Voß (bib0025) 2019; 93 Araújo (10.1016/j.ast.2025.110691_bib0023) 2021; 116 Khan (10.1016/j.ast.2025.110691_bib0045) 2025; 26 Luo (10.1016/j.ast.2025.110691_bib0022) 2021; 116 Park (10.1016/j.ast.2025.110691_bib0003) 2024; 151 Han (10.1016/j.ast.2025.110691_bib0002) 2024; 153 You (10.1016/j.ast.2025.110691_bib0015) 2009; 52 Zhao (10.1016/j.ast.2025.110691_bib0050) 2025; 159 Musa (10.1016/j.ast.2025.110691_bib0016) 2022; 201 Wang (10.1016/j.ast.2025.110691_bib0026) 2017; 66 Liu (10.1016/j.ast.2025.110691_bib0051) 2022; 130 Brahmachary (10.1016/j.ast.2025.110691_bib0028) 2021 He (10.1016/j.ast.2025.110691_bib0019) 2022; 130 Hao (10.1016/j.ast.2025.110691_bib0009) 2024; 148 Baigh (10.1016/j.ast.2025.110691_bib0044) 2024; 10 Sgubin (10.1016/j.ast.2025.110691_bib0001) 2025; 158 Zhong (10.1016/j.ast.2025.110691_bib0037) 2024 Turja (10.1016/j.ast.2025.110691_bib0041) 2024; 15 Fujio (10.1016/j.ast.2025.110691_bib0029) 2021; 113 Zenkner (10.1016/j.ast.2025.110691_bib0025) 2019; 93 Cheng (10.1016/j.ast.2025.110691_bib0024) 2019; 87 Brahmachary (10.1016/j.ast.2025.110691_bib0027) 2020; 107 Ma (10.1016/j.ast.2025.110691_bib0007) 2024 Fujio (10.1016/j.ast.2025.110691_bib0033) 2022 Rêgo (10.1016/j.ast.2025.110691_bib0006) 2016; 55 Wang (10.1016/j.ast.2025.110691_bib0020) 2023; 136 Sun (10.1016/j.ast.2025.110691_bib0018) 2023; 411 Ma (10.1016/j.ast.2025.110691_bib0035) 2023; 35 Otto (10.1016/j.ast.2025.110691_bib0008) 2016; 32 Molder (10.1016/j.ast.2025.110691_bib0011) 1967; 5 Wang (10.1016/j.ast.2025.110691_bib0034) 2023; 136 Jung (10.1016/j.ast.2025.110691_bib0004) 2024; 149 Tognelli (10.1016/j.ast.2025.110691_bib0012) 2023 Johnson (10.1016/j.ast.2025.110691_bib0010) 2023; 61 Fu (10.1016/j.ast.2025.110691_bib0021) 2022; 123 Raiyan (10.1016/j.ast.2025.110691_bib0046) 2025; 337 Lin (10.1016/j.ast.2025.110691_bib0049) 2021; 26 Turja (10.1016/j.ast.2025.110691_bib0042) 2024; 16 Nanzeeba (10.1016/j.ast.2025.110691_bib0043) 2024; 12 Dai (10.1016/j.ast.2025.110691_bib0005) 2024; 144 Meng (10.1016/j.ast.2025.110691_bib0047) 2024; 420 O'Brien (10.1016/j.ast.2025.110691_bib0014) 2007 Cerda-Flores (10.1016/j.ast.2025.110691_bib0048) 2022; 10 Guo (10.1016/j.ast.2025.110691_bib0038) 2024; 150 Khan (10.1016/j.ast.2025.110691_bib0039) 2024; 49 Hossain (10.1016/j.ast.2025.110691_bib0040) 2021; 6 Brahmachary (10.1016/j.ast.2025.110691_bib0030) 2022; 34 Fujio (10.1016/j.ast.2025.110691_bib0036) 2022; 130 Fujio (10.1016/j.ast.2025.110691_bib0031) 2022; 194 Fu (10.1016/j.ast.2025.110691_bib0032) 2022; 123 Flock (10.1016/j.ast.2025.110691_bib0013) 2016; 54 Musa (10.1016/j.ast.2025.110691_bib0017) 2023; 61 |
| References_xml | – volume: 54 start-page: 1881 year: 2016 end-page: 1891 ident: bib0013 article-title: Viscous effects and truncation effects in axisymmetric Busemann scramjet intakes publication-title: AIAA J. – volume: 34 year: 2022 ident: bib0030 article-title: Design optimization and off-design performance analysis of axisymmetric scramjet intakes for ascent flight publication-title: Phys. Fluids – volume: 52 start-page: 2017 year: 2009 end-page: 2028 ident: bib0015 article-title: Design concept of three-dimensional section controllable internal waverider hypersonic inlet publication-title: Sci. China E – volume: 35 year: 2023 ident: bib0035 article-title: Dynamic multi-objective optimization of scramjet inlet based on small-sample Kriging model publication-title: Phys. Fluids – volume: 136 year: 2023 ident: bib0020 article-title: Multi-objective aerodynamic optimization of an axisymmetric variable-geometry inlet with a mach 5 design point publication-title: Aerosp. Sci. Technol. – volume: 113 year: 2021 ident: bib0029 article-title: Physical insight into axisymmetric scramjet intake design via multi-objective design optimization using surrogate-assisted evolutionary algorithms publication-title: Aerosp. Sci. Technol. – volume: 93 year: 2019 ident: bib0025 article-title: Preliminary engine design and inlet optimization of the MULDICON concept publication-title: Aerosp. Sci. Technol. – volume: 87 start-page: 431 year: 2019 end-page: 447 ident: bib0024 article-title: Effective optimization on bump inlet using meta-model multi-objective particle swarm assisted by expected hyper-improvement publication-title: Aerosp. Sci. Technol. – volume: 159 year: 2025 ident: bib0050 article-title: Research on integrated design method of wide-range hypersonic vehicle/engine based on dynamic multi-objective optimization publication-title: Aerosp. Sci. Technol. – volume: 12 start-page: 1810 year: 2024 end-page: 1835 ident: bib0043 article-title: Genetic algorithm-based optimization of combined supercritical CO2 power and flash-tank enhanced transcritical CO2 refrigeration cycle for shipboard waste heat recuperation publication-title: Energy Rep. – volume: 26 start-page: 631 year: 2021 end-page: 645 ident: bib0049 article-title: An ensemble surrogate-based framework for expensive multiobjective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. – volume: 130 year: 2022 ident: bib0051 article-title: Uncertainty optimization design of airfoil based on adaptive point adding strategy publication-title: Aerosp. Sci. Technol. – volume: 158 year: 2025 ident: bib0001 article-title: Israel da Silveira Rêgo, assessment of heat flux on a printed scramjet inlet at mach 7 with coaxial thermocouples in a reflected shock tunnel publication-title: Aerosp. Sci. Technol. – volume: 6 year: 2021 ident: bib0040 article-title: Numerical investigation of a modified Kalina cycle system for high-temperature application and genetic algorithm based optimization of the multi-phase expander's inlet condition publication-title: Energy AI – volume: 151 year: 2024 ident: bib0003 article-title: Experimental and numerical investigation of the effects of porous bleed systems on a model scramjet inlet under high backpressure conditions publication-title: Aerosp. Sci. Technol. – volume: 149 year: 2024 ident: bib0004 article-title: Off-design characteristics of a scoop-type streamline-tracing scramjet inlet publication-title: Aerosp. Sci. Technol. – year: 2024 ident: bib0037 article-title: Fast flow field prediction approach of supersonic inlet in wide operating range based on deep learning publication-title: Aerosp. Sci. Technol. – volume: 15 year: 2024 ident: bib0041 article-title: Multi-objective performance optimization & thermodynamic analysis of solar powered supercritical CO2 power cycles using machine learning methods & genetic algorithm publication-title: Energy AI – volume: 61 start-page: 23 year: 2023 end-page: 36 ident: bib0010 article-title: Experimental investigations of the hypersonic stream-traced performance inlet at subdesign mach number publication-title: AIAA J. – volume: 49 year: 2024 ident: bib0039 article-title: Advanced cascaded recompression absorption system equipped with ejector and vapor-injection enhanced vapor compression refrigeration system: ann based multi-objective optimization publication-title: Therm. Sci. Eng. Prog. – volume: 153 year: 2024 ident: bib0002 article-title: Numerical investigation of scramjet inlet models for side spillage reduction publication-title: Aerosp. Sci. Technol. – volume: 130 year: 2022 ident: bib0019 article-title: Multi-objective optimization design of S-shaped inlet with internal bump publication-title: Aerosp. Sci. Technol. – start-page: 2353 year: 2023 ident: bib0012 article-title: Design and investigation of Busemann intakes for high-speed propulsion systems publication-title: AIAA SCITECH 2023 Forum – volume: 32 start-page: 1178 year: 2016 end-page: 1189 ident: bib0008 article-title: Inward-turning streamline-traced inlet design method for low-boom, low-drag applications publication-title: J. Propuls. Power – volume: 26 year: 2025 ident: bib0045 article-title: Multi-objective optimization of a cascaded supercritical CO2 brayton cycle with ejector-enhanced transcritical CO2 and flash tank absorption refrigeration cycles publication-title: Energy Convers. Manag. – volume: 148 year: 2024 ident: bib0009 article-title: Novel design method for inward-turning inlets with non-uniform inflow publication-title: Aerosp. Sci. Technol. – volume: 201 start-page: 230 year: 2022 end-page: 246 ident: bib0016 article-title: Assessment of new pressure-corrected design method for hypersonic internal waverider intake publication-title: Acta Astronaut. – start-page: 1408 year: 2022 ident: bib0033 article-title: Scramjet intake design based on exit flow profile via global optimization and deep learning toward inverse design publication-title: AIAA SCITECH 2022 Forum – volume: 107 year: 2020 ident: bib0027 article-title: Multi-point design optimization of a high-performance intake for scramjet-powered ascent flight publication-title: Aerosp. Sci. Technol. – volume: 194 start-page: 59 year: 2022 end-page: 75 ident: bib0031 article-title: Physical insights into multi-point global optimum design of scramjet intakes for ascent flight publication-title: Acta Astronaut. – volume: 10 year: 2024 ident: bib0044 article-title: Enhancing thermodynamic performance with an advanced combined power and refrigeration cycle with dual LNG cold energy utilization publication-title: Heliyon – volume: 123 year: 2022 ident: bib0021 article-title: Multi-objective aerodynamic optimization of two-dimensional hypersonic forebody-inlet based on the heuristic algorithm publication-title: Aerosp. Sci. Technol. – volume: 123 year: 2022 ident: bib0032 article-title: Multi-objective aerodynamic optimization of two-dimensional hypersonic forebody-inlet based on the heuristic algorithm publication-title: Aerosp. Sci. Technol. – volume: 116 year: 2021 ident: bib0022 article-title: Robust design optimization considering inlet flow angle variations of a turbine cascade publication-title: Aerosp. Sci. Technol. – start-page: 1 year: 2007 end-page: 8 ident: bib0014 article-title: Analytical computation of leading edge truncation effects on inviscid Busemann inlet performance publication-title: 45th AIAA Aerospace Sciences Meeting and Exhibit – volume: 420 year: 2024 ident: bib0047 article-title: Optimum-pursuing method for constrained optimization and reliability-based design optimization problems using Kriging model publication-title: Comput. Methods Appl. Mech. Eng. – volume: 150 year: 2024 ident: bib0038 article-title: Hypersonic inlet flow field reconstruction dominated by shock wave and boundary layer based on small sample physics-informed neural networks publication-title: Aerosp. Sci. Technol. – volume: 411 year: 2023 ident: bib0018 article-title: Physics-informed deep learning for simultaneous surrogate modeling and PDE-constrained optimization of an airfoil geometry publication-title: Comput. Methods Appl. Mech. Eng. – volume: 5 start-page: 1252 year: 1967 end-page: 1255 ident: bib0011 article-title: Internal, axisymmetric, conical flow publication-title: AIAA J. – volume: 61 start-page: 2906 year: 2023 end-page: 2921 ident: bib0017 article-title: New parent flowfield for streamline-traced intakes publication-title: AIAA J. – start-page: 1960 year: 2021 ident: bib0028 article-title: Multi-point design optimization of Busemann based intakes for scramjet-powered ascent flight via surrogate-assisted evolutionary algorithms publication-title: AIAA Scitech 2021 Forum – volume: 337 year: 2025 ident: bib0046 article-title: Exergoeconomic analysis and multi objective optimization of a nuclear driven integrated cooling and power cycle using response surface regression modeling coupled with genetic algorithm publication-title: Energy Convers. Manag. – year: 2024 ident: bib0007 article-title: Recent advances and prospects in hypersonic inlet design and intelligent optimization publication-title: Aerosp. Sci. Technol. – volume: 10 start-page: 133 year: 2022 ident: bib0048 article-title: Applications of multi-objective optimization to industrial processes: a literature review publication-title: Processes – volume: 144 year: 2024 ident: bib0005 article-title: Mode identification and decomposition analysis of self-excited thermodynamic oscillations in hypersonic inlet/isolator of a scramjet publication-title: Aerosp. Sci. Technol. – volume: 136 year: 2023 ident: bib0034 article-title: Multi-objective aerodynamic optimization of an axisymmetric variable-geometry inlet with a mach 5 design point publication-title: Aerosp. Sci. Technol. – volume: 55 start-page: 307 year: 2016 end-page: 313 ident: bib0006 article-title: Ground experimentation with 3D printed scramjet inlet models at hypervelocities publication-title: Aerosp. Sci. Technol. – volume: 66 start-page: 44 year: 2017 end-page: 58 ident: bib0026 article-title: Design of shape morphing hypersonic inward-turning inlet using multistage optimization publication-title: Aerosp. Sci. Technol. – volume: 116 year: 2021 ident: bib0023 article-title: Optimization of scramjet inlet based on temperature and mach number of supersonic combustion publication-title: Aerosp. Sci. Technol. – volume: 130 year: 2022 ident: bib0036 article-title: Deep-learning prediction and uncertainty quantification for scramjet intake flowfields publication-title: Aerosp. Sci. Technol. – volume: 16 year: 2024 ident: bib0042 article-title: Machine learning-based multi-objective optimization and thermal assessment of supercritical CO2 rankine cycles for gas turbine waste heat recovery publication-title: Energy AI – volume: 107 year: 2020 ident: 10.1016/j.ast.2025.110691_bib0027 article-title: Multi-point design optimization of a high-performance intake for scramjet-powered ascent flight publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106362 – volume: 32 start-page: 1178 issue: 5 year: 2016 ident: 10.1016/j.ast.2025.110691_bib0008 article-title: Inward-turning streamline-traced inlet design method for low-boom, low-drag applications publication-title: J. Propuls. Power doi: 10.2514/1.B36028 – volume: 123 year: 2022 ident: 10.1016/j.ast.2025.110691_bib0021 article-title: Multi-objective aerodynamic optimization of two-dimensional hypersonic forebody-inlet based on the heuristic algorithm publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2022.107470 – volume: 136 year: 2023 ident: 10.1016/j.ast.2025.110691_bib0034 article-title: Multi-objective aerodynamic optimization of an axisymmetric variable-geometry inlet with a mach 5 design point publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108189 – volume: 12 start-page: 1810 year: 2024 ident: 10.1016/j.ast.2025.110691_bib0043 article-title: Genetic algorithm-based optimization of combined supercritical CO2 power and flash-tank enhanced transcritical CO2 refrigeration cycle for shipboard waste heat recuperation publication-title: Energy Rep. doi: 10.1016/j.egyr.2024.07.059 – volume: 116 year: 2021 ident: 10.1016/j.ast.2025.110691_bib0023 article-title: Optimization of scramjet inlet based on temperature and mach number of supersonic combustion publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.106864 – volume: 5 start-page: 1252 issue: 7 year: 1967 ident: 10.1016/j.ast.2025.110691_bib0011 article-title: Internal, axisymmetric, conical flow publication-title: AIAA J. doi: 10.2514/3.4179 – start-page: 1960 year: 2021 ident: 10.1016/j.ast.2025.110691_bib0028 article-title: Multi-point design optimization of Busemann based intakes for scramjet-powered ascent flight via surrogate-assisted evolutionary algorithms – volume: 148 year: 2024 ident: 10.1016/j.ast.2025.110691_bib0009 article-title: Novel design method for inward-turning inlets with non-uniform inflow publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2024.109098 – volume: 123 year: 2022 ident: 10.1016/j.ast.2025.110691_bib0032 article-title: Multi-objective aerodynamic optimization of two-dimensional hypersonic forebody-inlet based on the heuristic algorithm publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2022.107470 – year: 2024 ident: 10.1016/j.ast.2025.110691_bib0037 article-title: Fast flow field prediction approach of supersonic inlet in wide operating range based on deep learning publication-title: Aerosp. Sci. Technol. – volume: 150 year: 2024 ident: 10.1016/j.ast.2025.110691_bib0038 article-title: Hypersonic inlet flow field reconstruction dominated by shock wave and boundary layer based on small sample physics-informed neural networks publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2024.109205 – volume: 130 year: 2022 ident: 10.1016/j.ast.2025.110691_bib0036 article-title: Deep-learning prediction and uncertainty quantification for scramjet intake flowfields publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2022.107931 – volume: 201 start-page: 230 year: 2022 ident: 10.1016/j.ast.2025.110691_bib0016 article-title: Assessment of new pressure-corrected design method for hypersonic internal waverider intake publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2022.09.001 – volume: 194 start-page: 59 year: 2022 ident: 10.1016/j.ast.2025.110691_bib0031 article-title: Physical insights into multi-point global optimum design of scramjet intakes for ascent flight publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2022.01.036 – volume: 16 year: 2024 ident: 10.1016/j.ast.2025.110691_bib0042 article-title: Machine learning-based multi-objective optimization and thermal assessment of supercritical CO2 rankine cycles for gas turbine waste heat recovery publication-title: Energy AI doi: 10.1016/j.egyai.2024.100372 – volume: 10 start-page: 133 issue: 1 year: 2022 ident: 10.1016/j.ast.2025.110691_bib0048 article-title: Applications of multi-objective optimization to industrial processes: a literature review publication-title: Processes doi: 10.3390/pr10010133 – start-page: 2353 year: 2023 ident: 10.1016/j.ast.2025.110691_bib0012 article-title: Design and investigation of Busemann intakes for high-speed propulsion systems – volume: 49 year: 2024 ident: 10.1016/j.ast.2025.110691_bib0039 article-title: Advanced cascaded recompression absorption system equipped with ejector and vapor-injection enhanced vapor compression refrigeration system: ann based multi-objective optimization publication-title: Therm. Sci. Eng. Prog. – volume: 411 year: 2023 ident: 10.1016/j.ast.2025.110691_bib0018 article-title: Physics-informed deep learning for simultaneous surrogate modeling and PDE-constrained optimization of an airfoil geometry publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116042 – year: 2024 ident: 10.1016/j.ast.2025.110691_bib0007 article-title: Recent advances and prospects in hypersonic inlet design and intelligent optimization publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2024.108953 – volume: 93 year: 2019 ident: 10.1016/j.ast.2025.110691_bib0025 article-title: Preliminary engine design and inlet optimization of the MULDICON concept publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.105318 – volume: 6 year: 2021 ident: 10.1016/j.ast.2025.110691_bib0040 article-title: Numerical investigation of a modified Kalina cycle system for high-temperature application and genetic algorithm based optimization of the multi-phase expander's inlet condition publication-title: Energy AI doi: 10.1016/j.egyai.2021.100117 – volume: 61 start-page: 2906 issue: 7 year: 2023 ident: 10.1016/j.ast.2025.110691_bib0017 article-title: New parent flowfield for streamline-traced intakes publication-title: AIAA J. doi: 10.2514/1.J062744 – volume: 158 year: 2025 ident: 10.1016/j.ast.2025.110691_bib0001 article-title: Israel da Silveira Rêgo, assessment of heat flux on a printed scramjet inlet at mach 7 with coaxial thermocouples in a reflected shock tunnel publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2024.109890 – volume: 54 start-page: 1881 issue: 6 year: 2016 ident: 10.1016/j.ast.2025.110691_bib0013 article-title: Viscous effects and truncation effects in axisymmetric Busemann scramjet intakes publication-title: AIAA J. doi: 10.2514/1.J054287 – volume: 149 year: 2024 ident: 10.1016/j.ast.2025.110691_bib0004 article-title: Off-design characteristics of a scoop-type streamline-tracing scramjet inlet publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2024.109139 – volume: 26 start-page: 631 issue: 4 year: 2021 ident: 10.1016/j.ast.2025.110691_bib0049 article-title: An ensemble surrogate-based framework for expensive multiobjective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3103936 – volume: 151 year: 2024 ident: 10.1016/j.ast.2025.110691_bib0003 article-title: Experimental and numerical investigation of the effects of porous bleed systems on a model scramjet inlet under high backpressure conditions publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2024.109264 – volume: 153 year: 2024 ident: 10.1016/j.ast.2025.110691_bib0002 article-title: Numerical investigation of scramjet inlet models for side spillage reduction publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2024.109423 – start-page: 1408 year: 2022 ident: 10.1016/j.ast.2025.110691_bib0033 article-title: Scramjet intake design based on exit flow profile via global optimization and deep learning toward inverse design – volume: 52 start-page: 2017 issue: 7 year: 2009 ident: 10.1016/j.ast.2025.110691_bib0015 article-title: Design concept of three-dimensional section controllable internal waverider hypersonic inlet publication-title: Sci. China E doi: 10.1007/s11431-009-0125-1 – volume: 144 year: 2024 ident: 10.1016/j.ast.2025.110691_bib0005 article-title: Mode identification and decomposition analysis of self-excited thermodynamic oscillations in hypersonic inlet/isolator of a scramjet publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108820 – volume: 55 start-page: 307 year: 2016 ident: 10.1016/j.ast.2025.110691_bib0006 article-title: Ground experimentation with 3D printed scramjet inlet models at hypervelocities publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2016.06.009 – volume: 87 start-page: 431 year: 2019 ident: 10.1016/j.ast.2025.110691_bib0024 article-title: Effective optimization on bump inlet using meta-model multi-objective particle swarm assisted by expected hyper-improvement publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.02.039 – start-page: 1 year: 2007 ident: 10.1016/j.ast.2025.110691_bib0014 article-title: Analytical computation of leading edge truncation effects on inviscid Busemann inlet performance – volume: 420 year: 2024 ident: 10.1016/j.ast.2025.110691_bib0047 article-title: Optimum-pursuing method for constrained optimization and reliability-based design optimization problems using Kriging model publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116704 – volume: 136 year: 2023 ident: 10.1016/j.ast.2025.110691_bib0020 article-title: Multi-objective aerodynamic optimization of an axisymmetric variable-geometry inlet with a mach 5 design point publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108189 – volume: 35 issue: 9 year: 2023 ident: 10.1016/j.ast.2025.110691_bib0035 article-title: Dynamic multi-objective optimization of scramjet inlet based on small-sample Kriging model publication-title: Phys. Fluids doi: 10.1063/5.0170231 – volume: 337 year: 2025 ident: 10.1016/j.ast.2025.110691_bib0046 article-title: Exergoeconomic analysis and multi objective optimization of a nuclear driven integrated cooling and power cycle using response surface regression modeling coupled with genetic algorithm publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2025.119836 – volume: 130 year: 2022 ident: 10.1016/j.ast.2025.110691_bib0051 article-title: Uncertainty optimization design of airfoil based on adaptive point adding strategy publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2022.107875 – volume: 26 year: 2025 ident: 10.1016/j.ast.2025.110691_bib0045 article-title: Multi-objective optimization of a cascaded supercritical CO2 brayton cycle with ejector-enhanced transcritical CO2 and flash tank absorption refrigeration cycles publication-title: Energy Convers. Manag. – volume: 130 year: 2022 ident: 10.1016/j.ast.2025.110691_bib0019 article-title: Multi-objective optimization design of S-shaped inlet with internal bump publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2022.107901 – volume: 61 start-page: 23 issue: 1 year: 2023 ident: 10.1016/j.ast.2025.110691_bib0010 article-title: Experimental investigations of the hypersonic stream-traced performance inlet at subdesign mach number publication-title: AIAA J. doi: 10.2514/1.J062113 – volume: 113 year: 2021 ident: 10.1016/j.ast.2025.110691_bib0029 article-title: Physical insight into axisymmetric scramjet intake design via multi-objective design optimization using surrogate-assisted evolutionary algorithms publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.106676 – volume: 66 start-page: 44 year: 2017 ident: 10.1016/j.ast.2025.110691_bib0026 article-title: Design of shape morphing hypersonic inward-turning inlet using multistage optimization publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2017.02.018 – volume: 159 year: 2025 ident: 10.1016/j.ast.2025.110691_bib0050 article-title: Research on integrated design method of wide-range hypersonic vehicle/engine based on dynamic multi-objective optimization publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2025.110031 – volume: 34 issue: 3 year: 2022 ident: 10.1016/j.ast.2025.110691_bib0030 article-title: Design optimization and off-design performance analysis of axisymmetric scramjet intakes for ascent flight publication-title: Phys. Fluids doi: 10.1063/5.0080272 – volume: 10 issue: 15 year: 2024 ident: 10.1016/j.ast.2025.110691_bib0044 article-title: Enhancing thermodynamic performance with an advanced combined power and refrigeration cycle with dual LNG cold energy utilization publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e35748 – volume: 15 year: 2024 ident: 10.1016/j.ast.2025.110691_bib0041 article-title: Multi-objective performance optimization & thermodynamic analysis of solar powered supercritical CO2 power cycles using machine learning methods & genetic algorithm publication-title: Energy AI doi: 10.1016/j.egyai.2023.100327 – volume: 116 year: 2021 ident: 10.1016/j.ast.2025.110691_bib0022 article-title: Robust design optimization considering inlet flow angle variations of a turbine cascade publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.106893 |
| SSID | ssj0002942 |
| Score | 2.4153411 |
| Snippet | •Developed a dynamic robust fusion neural network (DRFN) for high-speed inlet design.•Achieved high-efficiency optimization with improved aerodynamic... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 110691 |
| SubjectTerms | Inlet design Multi-objective optimization Neural network Scramjet Transfer learning |
| Title | Dynamic robust fusion neural network assisted multi-objective optimization framework for scramjet inlet design |
| URI | https://dx.doi.org/10.1016/j.ast.2025.110691 |
| Volume | 167 |
| WOSCitedRecordID | wos001543162000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1270-9638 databaseCode: AIEXJ dateStart: 19970101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002942 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLZK4QAHtA0Qvzb5wGlRUOr8PiJgYtOEJtahcors2BZUkKC2Qdz413nJs9NQhjQOu0RVlLpRvi_vfX797EfIQQSaIEyl54oBvE1BoH2XB1q7wgtUJL2c-40Z8_JnfH6ejEbpr17vya6FebiNiyJ5fEzv_yvUcA7ArpfOvgPudlA4AZ8BdDgC7HD8J-BPsMe8MylFNZ05uqrrYU69byWgUaDr2wHJXOMr0VDolmKMgc8pIYTcmbWZjrbOrcaMCAGG341V3VMAwHbk3Pthd7FVkHJhDq4cu1iosWe-Kt5fYKg7q-bl8CYTVC3JhsYo_Pu6ui5Nbm28wliuvVLdYgULO8YPjK8s9tz6nX8RgLEhhwmhoEcibOD1KrpjoWF8yKe1C5aFh_NrX-6kvZDhWt-htbSNMxgiq4fIcIglssziME36ZPno--noR5vMWdr0X2rv2_4x3lgEF-7j79KmI1eGH8i6mWfQI-THR9JTxSey1tl9coMUhikUmUKRKRSZQg1TqGUKXWAK7TKFtkyhwBRqmUIbplBkyib58-10eHzmmvYbbg6id-bKONFcskCFQugk1bHSgucRJAHFhKdAeg9iDuqfCy1YIHMBk_Eoh8t1zkFYS3-L9IuyUNuEDiIuRaIk06kfKJBAkR9LpQca9JNOtNghX-2Ty-5xl5XsTax2SGCfbWbojPIvA568_bXd9_zGHlmd03ef9GeTSn0mK_nD7GY6-WJI8gyMVo7F |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+robust+fusion+neural+network+assisted+multi-objective+optimization+framework+for+scramjet+inlet+design&rft.jtitle=Aerospace+science+and+technology&rft.au=Ren%2C+Hu&rft.au=Ma%2C+Yue&rft.au=Tong%2C+Shuhong&rft.au=Tian%2C+Ye&rft.date=2025-12-01&rft.issn=1270-9638&rft.volume=167&rft.spage=110691&rft_id=info:doi/10.1016%2Fj.ast.2025.110691&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ast_2025_110691 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon |