On the generators of Clifford semigroups: Polynomial resolvents and their integral transforms
This paper deals with generators A of strongly continuous right linear semigroups in Banach two-sided spaces whose set of scalars is an arbitrary Clifford algebra Cℓ(0,n). We study the invertibility of operators of the form P(A), where P(x)∈R[x] is any real polynomial, and we give an integral repres...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 521; číslo 1; s. 126905 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.05.2023
|
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper deals with generators A of strongly continuous right linear semigroups in Banach two-sided spaces whose set of scalars is an arbitrary Clifford algebra Cℓ(0,n). We study the invertibility of operators of the form P(A), where P(x)∈R[x] is any real polynomial, and we give an integral representation for P(A)−1 by means of a Laplace-type transform of the semigroup T(t) generated by A. In particular, we deduce a new integral representation for the spherical quadratic resolvent of A (also called pseudoresolvent of A). As an immediate consequence, we also obtain a new proof of the well-known integral representation for the spherical resolvent of A. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2022.126905 |