Fredholm separating maps on continuous function spaces
For locally compact Hausdorff spaces X and Y, we initiate a study of Fredholm separating maps T from C(X) into C(Y). Our key aim is to completely recognize the structures of the kernel space and the range space of T in terms of merging points to show that X and Y are homeomorphic after removing rela...
Saved in:
| Published in: | Journal of mathematical analysis and applications Vol. 534; no. 1; p. 128013 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.06.2024
|
| Subjects: | |
| ISSN: | 0022-247X, 1096-0813 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | For locally compact Hausdorff spaces X and Y, we initiate a study of Fredholm separating maps T from C(X) into C(Y). Our key aim is to completely recognize the structures of the kernel space and the range space of T in terms of merging points to show that X and Y are homeomorphic after removing related finite subsets; as the main result, we describe the interaction between continuity of T and closedness of its range; in particular, under certain condition, we conclude that T can be represented as a weighted composition operator. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2023.128013 |