Fredholm separating maps on continuous function spaces
For locally compact Hausdorff spaces X and Y, we initiate a study of Fredholm separating maps T from C(X) into C(Y). Our key aim is to completely recognize the structures of the kernel space and the range space of T in terms of merging points to show that X and Y are homeomorphic after removing rela...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 534; číslo 1; s. 128013 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.06.2024
|
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For locally compact Hausdorff spaces X and Y, we initiate a study of Fredholm separating maps T from C(X) into C(Y). Our key aim is to completely recognize the structures of the kernel space and the range space of T in terms of merging points to show that X and Y are homeomorphic after removing related finite subsets; as the main result, we describe the interaction between continuity of T and closedness of its range; in particular, under certain condition, we conclude that T can be represented as a weighted composition operator. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2023.128013 |