Fredholm separating maps on continuous function spaces

For locally compact Hausdorff spaces X and Y, we initiate a study of Fredholm separating maps T from C(X) into C(Y). Our key aim is to completely recognize the structures of the kernel space and the range space of T in terms of merging points to show that X and Y are homeomorphic after removing rela...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 534; číslo 1; s. 128013
Hlavní autoři: Manjegani, Seyed Mahmoud, Moomkesh, Shahla, Nasr Isfahani, Rasoul
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.06.2024
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For locally compact Hausdorff spaces X and Y, we initiate a study of Fredholm separating maps T from C(X) into C(Y). Our key aim is to completely recognize the structures of the kernel space and the range space of T in terms of merging points to show that X and Y are homeomorphic after removing related finite subsets; as the main result, we describe the interaction between continuity of T and closedness of its range; in particular, under certain condition, we conclude that T can be represented as a weighted composition operator.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2023.128013