General inertial proximal stochastic mirror descent algorithm beyond Lipschitz smoothness assumption

In this paper, minimizing the sum of an average of finite proper closed nonconvex functions and a proper lower semicontinuous convex function over a closed convex set, is considered. We propose the general inertial proximal stochastic mirror descent (IPSMD for short) algorithm framework, which not o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics Jg. 476; S. 117108
Hauptverfasser: Wang, Shuang, Dong, Xiaomei, Gao, Xue
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.04.2026
Schlagworte:
ISSN:0377-0427
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, minimizing the sum of an average of finite proper closed nonconvex functions and a proper lower semicontinuous convex function over a closed convex set, is considered. We propose the general inertial proximal stochastic mirror descent (IPSMD for short) algorithm framework, which not only introduces the more general inertial technique and the variance reduced gradient estimator, but also circumvents the restrictive condition of Lipschitz smoothness by using Legendre function. In theory, we establish that the sequence generated by IPSMD algorithm globally converges to the critical point, under the condition that the objective function is semialgebraic. Besides the theoretical improvement in the convergence analysis, there are also possible computational advantages which provide an interesting option for practical problems.
AbstractList In this paper, minimizing the sum of an average of finite proper closed nonconvex functions and a proper lower semicontinuous convex function over a closed convex set, is considered. We propose the general inertial proximal stochastic mirror descent (IPSMD for short) algorithm framework, which not only introduces the more general inertial technique and the variance reduced gradient estimator, but also circumvents the restrictive condition of Lipschitz smoothness by using Legendre function. In theory, we establish that the sequence generated by IPSMD algorithm globally converges to the critical point, under the condition that the objective function is semialgebraic. Besides the theoretical improvement in the convergence analysis, there are also possible computational advantages which provide an interesting option for practical problems.
ArticleNumber 117108
Author Dong, Xiaomei
Wang, Shuang
Gao, Xue
Author_xml – sequence: 1
  givenname: Shuang
  surname: Wang
  fullname: Wang, Shuang
  organization: Institute of Mathematics, Hebei University of Technology, Tianjin 300401, PR China
– sequence: 2
  givenname: Xiaomei
  surname: Dong
  fullname: Dong, Xiaomei
  organization: College of Sciences, Shanghai Institute of Technology, Shanghai 201418, PR China
– sequence: 3
  givenname: Xue
  surname: Gao
  fullname: Gao, Xue
  email: xgao@hebut.edu.cn
  organization: Institute of Mathematics, Hebei University of Technology, Tianjin 300401, PR China
BookMark eNp9kL1OwzAUhT0UibbwAGx-gQQ7P3YjJlRBQarE0t1y7BviqrEjX4MoT49RmZnOWb6je78VWfjggZA7zkrOuLg_lkZPZcWqtuRccrZZkCWrpSxYU8lrskI8MsZEx5slsTvwEPWJuhzJ5TLH8OWmXDAFM2pMztDJxRgitYAGfKL69B6iS-NEezgHb-nezWhGl74pTiGk0QMi1Ygf05xc8DfkatAnhNu_XJPD89Nh-1Ls33av28d9YaqWp6Kzm17YljfNwIUGKWQHmtd9Z6Vt7GD6XloGjRAV00NdaQG1lZ2xzHLZMlGvCb_MmhgQIwxqjvmTeFacqV8z6qiyGfVrRl3MZObhwkC-69NBVGgceAPWRTBJ2eD-oX8A54dzBg
Cites_doi 10.1137/20M1387213
10.1007/s10107-018-1284-2
10.1137/S1052623499354564
10.1287/moor.1100.0449
10.1007/s10208-017-9366-8
10.1137/140961791
10.1007/s10107-015-0871-8
10.1287/moor.2016.0817
10.1137/17M1138558
10.1016/S0167-6377(02)00231-6
10.1007/s10107-012-0629-5
10.1137/080716542
10.1137/16M1055323
10.1016/0041-5553(67)90040-7
10.1007/s10107-011-0484-9
10.1007/s10107-013-0701-9
10.1023/A:1023087304476
10.1137/S0363012998338806
10.1007/s10589-019-00073-1
10.1214/aos/1176348385
10.1007/BF01580089
10.1016/0041-5553(64)90137-5
10.1007/s10107-011-0472-0
10.1007/s10898-023-01300-0
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2025.117108
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_cam_2025_117108
S0377042725006223
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABDPE
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c251t-9d8b6d5144f16ae7679ea13b9d7d4dfcbb7d0e46620af32a6e3d79cd0d175063
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001590442700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Thu Nov 27 01:09:35 EST 2025
Wed Dec 10 14:32:03 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Mirror descent
49J52
Variance reduction
Nonconvex nonsmooth optimization
90C26
90C15
Inertial
Proximal gradient descent
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-9d8b6d5144f16ae7679ea13b9d7d4dfcbb7d0e46620af32a6e3d79cd0d175063
ParticipantIDs crossref_primary_10_1016_j_cam_2025_117108
elsevier_sciencedirect_doi_10_1016_j_cam_2025_117108
PublicationCentury 2000
PublicationDate April 2026
2026-04-00
PublicationDateYYYYMMDD 2026-04-01
PublicationDate_xml – month: 04
  year: 2026
  text: April 2026
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lu (b20) 2019; 1
Bertsekas (b8) 2011; 129
Censor, Iusem, Zenios (b15) 1998; 81
Bauschke, Combettes (b4) 2011
Zhang, Barrio, Martínez, Jiang, Cheng (b27) 2019; 7
Attouch, Bolte, Svaiter (b23) 2013; 137
Rish, Grabarnik (b3) 2014
Nesterov (b7) 2013; 140
Li, Pong (b30) 2018; 18
Han (b16) 2003; 26
Bregman (b21) 1967; 7
Bolte, Sabach, Teboulle (b24) 2014; 146
Driggs, Tang, Liang, Davies, Schönlieb (b10) 2021; 14
Xiao, Zhang (b2) 2014; 24
Beck, Teboulle (b17) 2003; 31
Beck, Teboulle (b6) 2009; 2
Wen, Chen, Pong (b25) 2017; 27
Bauschke, Bolte, Teboulle (b14) 2016; 42
Tseng (b5) 2000; 38
Gao, Cai, Wang, Han (b29) 2023; 87
Bolte, Sabach, Teboulle, Vaisbourd (b1) 2018; 28
Wu, Li (b26) 2019; 73
Csiszar (b31) 1991; 19
Ben-Tal, Margalit, Nemirovski (b18) 2001; 12
Teboulle (b19) 2018; 170
Nesterov (b13) 2004
Polyak (b12) 1964; 4
Rényi (b28) 2007
Defazio, Bach, Lacoste-Julien (b9) 2014; 27
Attouch, Bolte, Redont, Soubeyran (b22) 2010; 35
Ghadimi, Lan (b11) 2016; 156
Beck (10.1016/j.cam.2025.117108_b17) 2003; 31
Nesterov (10.1016/j.cam.2025.117108_b7) 2013; 140
Bertsekas (10.1016/j.cam.2025.117108_b8) 2011; 129
Bolte (10.1016/j.cam.2025.117108_b24) 2014; 146
Gao (10.1016/j.cam.2025.117108_b29) 2023; 87
Csiszar (10.1016/j.cam.2025.117108_b31) 1991; 19
Bauschke (10.1016/j.cam.2025.117108_b14) 2016; 42
Attouch (10.1016/j.cam.2025.117108_b22) 2010; 35
Beck (10.1016/j.cam.2025.117108_b6) 2009; 2
Zhang (10.1016/j.cam.2025.117108_b27) 2019; 7
Ghadimi (10.1016/j.cam.2025.117108_b11) 2016; 156
Bolte (10.1016/j.cam.2025.117108_b1) 2018; 28
Polyak (10.1016/j.cam.2025.117108_b12) 1964; 4
Rényi (10.1016/j.cam.2025.117108_b28) 2007
Rish (10.1016/j.cam.2025.117108_b3) 2014
Tseng (10.1016/j.cam.2025.117108_b5) 2000; 38
Nesterov (10.1016/j.cam.2025.117108_b13) 2004
Ben-Tal (10.1016/j.cam.2025.117108_b18) 2001; 12
Li (10.1016/j.cam.2025.117108_b30) 2018; 18
Teboulle (10.1016/j.cam.2025.117108_b19) 2018; 170
Driggs (10.1016/j.cam.2025.117108_b10) 2021; 14
Bauschke (10.1016/j.cam.2025.117108_b4) 2011
Wu (10.1016/j.cam.2025.117108_b26) 2019; 73
Defazio (10.1016/j.cam.2025.117108_b9) 2014; 27
Han (10.1016/j.cam.2025.117108_b16) 2003; 26
Attouch (10.1016/j.cam.2025.117108_b23) 2013; 137
Lu (10.1016/j.cam.2025.117108_b20) 2019; 1
Censor (10.1016/j.cam.2025.117108_b15) 1998; 81
Wen (10.1016/j.cam.2025.117108_b25) 2017; 27
Xiao (10.1016/j.cam.2025.117108_b2) 2014; 24
Bregman (10.1016/j.cam.2025.117108_b21) 1967; 7
References_xml – year: 2004
  ident: b13
  article-title: Introductory Lectures on Convex Optimization: A Basic Course
– volume: 27
  start-page: 124
  year: 2017
  end-page: 145
  ident: b25
  article-title: Linear convergence of proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth minimization problems
  publication-title: SIAM J. Optim.
– year: 2007
  ident: b28
  article-title: Probability Theory
– volume: 35
  start-page: 438
  year: 2010
  end-page: 457
  ident: b22
  article-title: Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka–Łojasiewicz inequality
  publication-title: Math. Oper. Res.
– volume: 146
  start-page: 459
  year: 2014
  end-page: 494
  ident: b24
  article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems
  publication-title: Math. Program.
– volume: 18
  start-page: 1199
  year: 2018
  end-page: 1232
  ident: b30
  article-title: Calculus of the exponent of Kurdyka–Łjasiewicz inequality and its applications to linear convergence of first-order methods
  publication-title: Found. Comput. Math.
– volume: 19
  start-page: 2032
  year: 1991
  end-page: 2066
  ident: b31
  article-title: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems
  publication-title: Ann. Stat.
– volume: 129
  start-page: 163
  year: 2011
  end-page: 195
  ident: b8
  article-title: Incremental proximal methods for large scale convex optimization
  publication-title: Math. Program.
– volume: 38
  start-page: 431
  year: 2000
  end-page: 446
  ident: b5
  article-title: A modified forward–backward splitting method for maximal monotone mappings
  publication-title: SIAM J. Control Optim.
– volume: 7
  start-page: 200
  year: 1967
  end-page: 217
  ident: b21
  article-title: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
  publication-title: USSR Comput. Math. Math. Phys.
– volume: 42
  start-page: 330
  year: 2016
  end-page: 348
  ident: b14
  article-title: A descent lemma beyond Lipschitz gradient continuity: First-order methods revisited and applications
  publication-title: Math. Oper. Res.
– volume: 28
  start-page: 2131
  year: 2018
  end-page: 2151
  ident: b1
  article-title: First order methods beyond convexity and Lipschitz gradient continuity with applications to quadratic inverse problems
  publication-title: SIAM J. Optim.
– volume: 137
  start-page: 91
  year: 2013
  end-page: 129
  ident: b23
  article-title: Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss–Seidel methods
  publication-title: Math. Program.
– volume: 1
  start-page: 288
  year: 2019
  end-page: 303
  ident: b20
  article-title: Relative-continuity for non-Lipschitz non-smooth convex optimization using stochastic (or deterministic) mirror descent
  publication-title: Inf. J. Optim.
– volume: 81
  start-page: 373
  year: 1998
  end-page: 400
  ident: b15
  article-title: An interior point method with Bregman functions for the variational inequality problem with paramonotone operators
  publication-title: Math. Program.
– volume: 27
  start-page: 1646
  year: 2014
  end-page: 1654
  ident: b9
  article-title: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 24
  start-page: 2057
  year: 2014
  end-page: 2075
  ident: b2
  article-title: A proximal stochastic gradient method with progressive variance reduction
  publication-title: SIAM J. Optim.
– year: 2014
  ident: b3
  article-title: Sparse Modeling: Theory, Algorithms, and Applications
– volume: 7
  year: 2019
  ident: b27
  article-title: Bregman proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth minimization problems
  publication-title: IEEE Access
– year: 2011
  ident: b4
  article-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
– volume: 31
  start-page: 167
  year: 2003
  end-page: 175
  ident: b17
  article-title: Mirror descent and nonlinear projected subgradient methods for convex optimization
  publication-title: Oper. Res. Lett.
– volume: 140
  start-page: 125
  year: 2013
  end-page: 161
  ident: b7
  article-title: Gradient methods for minimizing composite functions
  publication-title: Math. Program.
– volume: 170
  start-page: 67
  year: 2018
  end-page: 96
  ident: b19
  article-title: A simplified view of first order methods for optimization
  publication-title: Math. Program.
– volume: 73
  start-page: 129
  year: 2019
  end-page: 158
  ident: b26
  article-title: General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems
  publication-title: Comput. Optim. Appl.
– volume: 4
  start-page: 1
  year: 1964
  end-page: 17
  ident: b12
  article-title: Some methods of speeding up the convergence of iteration methods
  publication-title: USSR Comput. Math. Math. Phys.
– volume: 12
  start-page: 79
  year: 2001
  end-page: 108
  ident: b18
  article-title: The ordered subsets mirror descent optimization method with applications to tomography
  publication-title: SIAM J. Optim.
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: b6
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
– volume: 156
  start-page: 59
  year: 2016
  end-page: 99
  ident: b11
  article-title: Accelerated gradient methods for nonconvex nonlinear and stochastic programming
  publication-title: Math. Program.
– volume: 87
  start-page: 277
  year: 2023
  end-page: 300
  ident: b29
  article-title: An alternating structure-adapted bregman proximal gradient descent algorithm for constrained nonconvex nonsmooth optimization problems and its inertial variant
  publication-title: J. Global Optim.
– volume: 14
  start-page: 1932
  year: 2021
  end-page: 1970
  ident: b10
  article-title: A stochastic proximal alternating minimization for nonsmooth and nonconvex optimization
  publication-title: SIAM J. Imaging Sci.
– volume: 26
  start-page: 125
  year: 2003
  end-page: 140
  ident: b16
  article-title: A new hybrid generalized proximal point algorithm for variational inequality problems
  publication-title: J. Global Optim.
– volume: 14
  start-page: 1932
  issue: 4
  year: 2021
  ident: 10.1016/j.cam.2025.117108_b10
  article-title: A stochastic proximal alternating minimization for nonsmooth and nonconvex optimization
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/20M1387213
– volume: 170
  start-page: 67
  year: 2018
  ident: 10.1016/j.cam.2025.117108_b19
  article-title: A simplified view of first order methods for optimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1284-2
– year: 2014
  ident: 10.1016/j.cam.2025.117108_b3
– volume: 12
  start-page: 79
  issue: 1
  year: 2001
  ident: 10.1016/j.cam.2025.117108_b18
  article-title: The ordered subsets mirror descent optimization method with applications to tomography
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499354564
– volume: 35
  start-page: 438
  issue: 2
  year: 2010
  ident: 10.1016/j.cam.2025.117108_b22
  article-title: Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka–Łojasiewicz inequality
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0449
– volume: 18
  start-page: 1199
  year: 2018
  ident: 10.1016/j.cam.2025.117108_b30
  article-title: Calculus of the exponent of Kurdyka–Łjasiewicz inequality and its applications to linear convergence of first-order methods
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-017-9366-8
– volume: 24
  start-page: 2057
  issue: 4
  year: 2014
  ident: 10.1016/j.cam.2025.117108_b2
  article-title: A proximal stochastic gradient method with progressive variance reduction
  publication-title: SIAM J. Optim.
  doi: 10.1137/140961791
– volume: 156
  start-page: 59
  year: 2016
  ident: 10.1016/j.cam.2025.117108_b11
  article-title: Accelerated gradient methods for nonconvex nonlinear and stochastic programming
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0871-8
– volume: 42
  start-page: 330
  issue: 2
  year: 2016
  ident: 10.1016/j.cam.2025.117108_b14
  article-title: A descent lemma beyond Lipschitz gradient continuity: First-order methods revisited and applications
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2016.0817
– volume: 28
  start-page: 2131
  issue: 3
  year: 2018
  ident: 10.1016/j.cam.2025.117108_b1
  article-title: First order methods beyond convexity and Lipschitz gradient continuity with applications to quadratic inverse problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1138558
– volume: 31
  start-page: 167
  issue: 3
  year: 2003
  ident: 10.1016/j.cam.2025.117108_b17
  article-title: Mirror descent and nonlinear projected subgradient methods for convex optimization
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(02)00231-6
– volume: 140
  start-page: 125
  year: 2013
  ident: 10.1016/j.cam.2025.117108_b7
  article-title: Gradient methods for minimizing composite functions
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0629-5
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 10.1016/j.cam.2025.117108_b6
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 27
  start-page: 124
  issue: 1
  year: 2017
  ident: 10.1016/j.cam.2025.117108_b25
  article-title: Linear convergence of proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth minimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1055323
– volume: 7
  start-page: 200
  issue: 3
  year: 1967
  ident: 10.1016/j.cam.2025.117108_b21
  article-title: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90040-7
– volume: 7
  year: 2019
  ident: 10.1016/j.cam.2025.117108_b27
  article-title: Bregman proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth minimization problems
  publication-title: IEEE Access
– volume: 137
  start-page: 91
  year: 2013
  ident: 10.1016/j.cam.2025.117108_b23
  article-title: Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss–Seidel methods
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0484-9
– volume: 1
  start-page: 288
  issue: 4
  year: 2019
  ident: 10.1016/j.cam.2025.117108_b20
  article-title: Relative-continuity for non-Lipschitz non-smooth convex optimization using stochastic (or deterministic) mirror descent
  publication-title: Inf. J. Optim.
– volume: 146
  start-page: 459
  year: 2014
  ident: 10.1016/j.cam.2025.117108_b24
  article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0701-9
– volume: 26
  start-page: 125
  year: 2003
  ident: 10.1016/j.cam.2025.117108_b16
  article-title: A new hybrid generalized proximal point algorithm for variational inequality problems
  publication-title: J. Global Optim.
  doi: 10.1023/A:1023087304476
– volume: 38
  start-page: 431
  issue: 2
  year: 2000
  ident: 10.1016/j.cam.2025.117108_b5
  article-title: A modified forward–backward splitting method for maximal monotone mappings
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012998338806
– year: 2004
  ident: 10.1016/j.cam.2025.117108_b13
– volume: 73
  start-page: 129
  year: 2019
  ident: 10.1016/j.cam.2025.117108_b26
  article-title: General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-019-00073-1
– volume: 19
  start-page: 2032
  issue: 4
  year: 1991
  ident: 10.1016/j.cam.2025.117108_b31
  article-title: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176348385
– volume: 27
  start-page: 1646
  year: 2014
  ident: 10.1016/j.cam.2025.117108_b9
  article-title: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 81
  start-page: 373
  year: 1998
  ident: 10.1016/j.cam.2025.117108_b15
  article-title: An interior point method with Bregman functions for the variational inequality problem with paramonotone operators
  publication-title: Math. Program.
  doi: 10.1007/BF01580089
– volume: 4
  start-page: 1
  issue: 5
  year: 1964
  ident: 10.1016/j.cam.2025.117108_b12
  article-title: Some methods of speeding up the convergence of iteration methods
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– year: 2007
  ident: 10.1016/j.cam.2025.117108_b28
– volume: 129
  start-page: 163
  year: 2011
  ident: 10.1016/j.cam.2025.117108_b8
  article-title: Incremental proximal methods for large scale convex optimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0472-0
– volume: 87
  start-page: 277
  year: 2023
  ident: 10.1016/j.cam.2025.117108_b29
  article-title: An alternating structure-adapted bregman proximal gradient descent algorithm for constrained nonconvex nonsmooth optimization problems and its inertial variant
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-023-01300-0
– year: 2011
  ident: 10.1016/j.cam.2025.117108_b4
SSID ssj0006914
Score 2.4670868
Snippet In this paper, minimizing the sum of an average of finite proper closed nonconvex functions and a proper lower semicontinuous convex function over a closed...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 117108
SubjectTerms Inertial
Mirror descent
Nonconvex nonsmooth optimization
Proximal gradient descent
Variance reduction
Title General inertial proximal stochastic mirror descent algorithm beyond Lipschitz smoothness assumption
URI https://dx.doi.org/10.1016/j.cam.2025.117108
Volume 476
WOSCitedRecordID wos001590442700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 20211213
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006914
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5VAFJ5cWxe6MPWVPtTMwpUEA1zuDLNsTI012ri4iezIvPDSFLjhcpvaX98zMANY28Qu3BBCYCB8X858c-Y8EHq_mEehjpn0RRRJWKAsTJsXGfhcgLrXKg6kiLtmE_TsLElT9mM2--1yYS4vaFUlV1ds_V-hhmsAtkmdfQDcw6BwAc4BdDgC7HD8J-BtIWnPZPW1xh9uIlWKsssLqeWKm8LMXlk0TW16g3fFnDx-8atuinZVeqLPaPlWrDdmh-Ha25Q1gNkZRNDZAP6A5N-SVnYtIpx7sSsDa0VuOVSHHTT8T-epXm25nT6NoLYhwmnB61IXQ3gQ71y66VZP3RQRmUS32PQsSn3T2GNqemM6NZ5hCHInudOu9y6Gc1izm-oB0eLjeO-fNbRvzW1DxKELZjvPYIjMDJH1QzxCuxFdMLDpu8enJ-nXYRonrC8M777bbYl3wYG3vuNuUTMRKss99MzCgY97ZjxHM129QE-_jwC8RMpyBDuOYMcRPHIE9xzBliN44AjuOYIHjuCRI3jkyCu0_Hyy_PTFt-02fAkit_WZSgRRIKDjPCRcU0KZ5uFcMEVVrHIpBFWBjgmJAp7PI070XFEmVaBAgoLSfY12qrrS-wgrEeaE5USQ7v4wkaBElYhiBctZxfID9MH9rmzdF1XJ7gXoAMXuh2ZWFfZqLwNy3P_Y4UPecYSejJx9g3baZqvfosfysi02zTvLjBs1Q4iC
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+inertial+proximal+stochastic+mirror+descent+algorithm+beyond+Lipschitz+smoothness+assumption&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Wang%2C+Shuang&rft.au=Dong%2C+Xiaomei&rft.au=Gao%2C+Xue&rft.date=2026-04-01&rft.issn=0377-0427&rft.volume=476&rft.spage=117108&rft_id=info:doi/10.1016%2Fj.cam.2025.117108&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2025_117108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon