Dynamics of two species predator-prey model with spatially nonhomogeneous diffusion strategy

In this paper, we investigate a Holling type-II predator-prey system with spatially nonhomogeneous diffusion strategy. By employing the methods of the implicit function theorem, eigenvalue theory and bifurcation theory, we analyze the stability/instability of the positive steady state and explore th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 548; číslo 2; s. 129412
Hlavní autoři: Ma, Li, Liang, Haihua, Wang, Huatao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.08.2025
Témata:
ISSN:0022-247X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we investigate a Holling type-II predator-prey system with spatially nonhomogeneous diffusion strategy. By employing the methods of the implicit function theorem, eigenvalue theory and bifurcation theory, we analyze the stability/instability of the positive steady state and explore the existence of a Hopf bifurcation when the diffusion rate is large. Furthermore, when the driven diffusion functions Q1(x)=eqm(x) and Q2(x)≡1, we detailed discuss how the parameter q of the density dependent diffusion Q1(x) affect the occurrence of Hopf bifurcations and the values of Hopf bifurcations.
ISSN:0022-247X
DOI:10.1016/j.jmaa.2025.129412